Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_309_a2, author = {Gleb E. Arutyunov and Enrico Olivucci}, title = {Hyperbolic {Spin} {Ruijsenaars--Schneider} {Model} from {Poisson} {Reduction}}, journal = {Informatics and Automation}, pages = {38--53}, publisher = {mathdoc}, volume = {309}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a2/} }
Gleb E. Arutyunov; Enrico Olivucci. Hyperbolic Spin Ruijsenaars--Schneider Model from Poisson Reduction. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 38-53. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a2/
[1] Arutyunov G., Elements of classical and quantum integrable systems, Springer, Cham, 2019 | MR | Zbl
[2] Arutyunov G.E., Chekhov L.O., Frolov S.A., “$R$-matrix quantization of the elliptic Ruijsenaars–Schneider model”, Commun. Math. Phys., 192:2 (1998), 405–432 | MR | Zbl
[3] Arutyunov G.E., Frolov S.A., “Quantum dynamical R-matrices and quantum Frobenius group”, Commun. Math. Phys., 191:1 (1998), 15–29 ; arXiv: q-alg/9610009 | MR | Zbl
[4] Arutyunov G.E., Frolov S.A., “On the Hamiltonian structure of the spin Ruijsenaars–Schneider model”, J. Phys. A: Math. Gen., 31:18 (1998), 4203–4216 ; arXiv: hep-th/9703119 | MR | Zbl
[5] Arutyunov G.E., Frolov S.A., Medvedev P.B., “Elliptic Ruijsenaars–Schneider model via the Poisson reduction of the affine Heisenberg double”, J. Phys. A: Math. Gen., 30:14 (1997), 5051–5063 ; arXiv: hep-th/9607170 | MR | Zbl
[6] Arutyunov G.E., Frolov S.A., Medvedev P.B., “Elliptic Ruijsenaars–Schneider model from the cotangent bundle over the two-dimensional current group”, J. Math. Phys., 38:11 (1997), 5682–5689 ; arXiv: hep-th/9608013 | MR | Zbl
[7] Arutyunov G., Klabbers R., Olivucci E., “Quantum trace formulae for the integrals of the hyperbolic Ruijsenaars–Schneider model”, J. High Energy Phys., 2019:05 (2019), 069 ; arXiv: 1902.06755 | MR
[8] Chalykh O., Fairon M., “Multiplicative quiver varieties and generalised Ruijsenaars–Schneider models”, J. Geom. Phys., 121 (2017), 413–437 ; arXiv: 1704.05814 | MR | Zbl
[9] Chalykh O., Fairon M., On the Hamiltonian formulation of the trigonometric spin Ruijsenaars–Schneider system, E-print, 2018, arXiv: 1811.08727
[10] Fairon M., Spin versions of the complex trigonometric Ruijsenaars–Schneider model from cyclic quivers, E-print, 2018, arXiv: 1811.08717 | MR
[11] Fehér L., Poisson–Lie analogues of spin Sutherland models, E-print, 2018, arXiv: 1809.01529 | MR
[12] Fehér L., Görbe T.F., “The full phase space of a model in the Calogero–Ruijsenaars family”, J. Geom. Phys., 115 (2017), 139–149 ; arXiv: 1603.02877 | MR | Zbl
[13] Fehér L., Klimčík C., “Poisson–Lie generalization of the Kazhdan–Kostant–Sternberg reduction”, Lett. Math. Phys., 87:1–2 (2009), 125–138 ; arXiv: 0809.1509 | MR | Zbl
[14] Fehér L., Klimčík C., “Poisson–Lie interpretation of trigonometric Ruijsenaars duality”, Commun. Math. Phys., 301:1 (2011), 55–104 ; arXiv: 0906.4198 | MR | Zbl
[15] Flaschka H., Ratiu T., “A convexity theorem for Poisson actions of compact Lie groups”, Ann. sci. Éc. norm. supér. Ser. 4, 29:6 (1996), 787–809 | MR | Zbl
[16] Gorsky A., Nekrasov N., “Relativistic Calogero–Moser model as gauged WZW theory”, Nucl. Phys. B, 436:3 (1995), 582–608 ; arXiv: hep-th/9401017 | MR | Zbl
[17] Gorsky A., Nekrasov N., Elliptic Calogero–Moser system from two dimensional current algebra, E-print, 1994, arXiv: hep-th/9401021 | Zbl
[18] Kazhdan D., Kostant B., Sternberg S., “Hamiltonian group actions and dynamical systems of Calogero type”, Commun. Pure Appl. Math., 31:4 (1978), 481–507 ; arXiv: hep-th/9505039 | MR | Zbl
[19] I. Krichever and A. Zabrodin, “Spin generalization of the Ruijsenaars–Schneider model, the non-Abelian 2D Toda chain, and representations of the Sklyanin algebra”, Russ. Math. Surv., 50:6 (1995), 1101–1150 | MR | Zbl
[20] Reshetikhin N., “Degenerately integrable systems”, Zap. nauch. sem. POMI, 433 (2015), 224–245 ; arXiv: ; N. Reshetikhin, “Degenerately integrable systems”, J. Math. Sci., 213:5 (2016), 769–785 ; Zap. Nauchn. Semin. POMI, 433 (2015), 224–245; E-print, arXiv: 1509.007301509.00730 | MR | Zbl
[21] Ruijsenaars S.N.M., “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110:2 (1987), 191–213 | MR | Zbl
[22] Ruijsenaars S.N.M., Schneider H., “A new class of integrable systems and its relation to solitons”, Ann. Phys., 170:2 (1986), 370–405 | MR | Zbl
[23] Semenov-Tian-Shansky M.A., “Dressing transformations and Poisson group actions”, Publ. Res. Inst. Math. Sci., 21:6 (1985), 1237–1260 | MR