Characterization of the Moyal Multiplier Algebras for the Generalized Spaces of Type $S$
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 290-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the properties of the Moyal multiplier algebras for the generalized Gelfand–Shilov spaces $S^{b_n}_{a_k}$. We prove that these algebras contain Palamodov spaces of type $\mathscr E$, and establish continuity properties of the operators with Weyl symbols in this class. Analogous results are obtained for the projective version of the spaces of type $S$ and are extended to the multiplier algebras for various translation-invariant star products.
Mots-clés : deformation quantization, multiplier algebra
Keywords: Weyl symbols, Moyal product, Gelfand–Shilov spaces.
@article{TRSPY_2020_309_a19,
     author = {M. A. Soloviev},
     title = {Characterization of the {Moyal} {Multiplier} {Algebras} for the {Generalized} {Spaces} of {Type} $S$},
     journal = {Informatics and Automation},
     pages = {290--303},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a19/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Characterization of the Moyal Multiplier Algebras for the Generalized Spaces of Type $S$
JO  - Informatics and Automation
PY  - 2020
SP  - 290
EP  - 303
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a19/
LA  - ru
ID  - TRSPY_2020_309_a19
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Characterization of the Moyal Multiplier Algebras for the Generalized Spaces of Type $S$
%J Informatics and Automation
%D 2020
%P 290-303
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a19/
%G ru
%F TRSPY_2020_309_a19
M. A. Soloviev. Characterization of the Moyal Multiplier Algebras for the Generalized Spaces of Type $S$. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 290-303. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a19/

[1] Cappiello M., Toft J., “Pseudo-differential operators in a Gelfand–Shilov setting”, Math. Nachr., 290:5–6 (2017), 738–755 | MR | Zbl

[2] Chaichian M., Mnatsakanova M.N., Tureanu A., Vernov Yu., “Test functions space in noncommutative quantum field theory”, J. High Energy Phys., 2008:09 (2008), 125 | MR | Zbl

[3] Folland G.B., Harmonic analysis in phase space, Ann. Math. Stud., 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl

[4] Gayral V., Gracia-Bondía J.M., Iochum B., Schücker T., Várilly J.C., “Moyal planes are spectral triples”, Commun. Math. Phys., 246:3 (2004), 569–623 | MR | Zbl

[5] I. M. Gelfand and G. E. Shilov, Spaces of Fundamental and Generalized Functions, Fizmatgiz, Moscow, 1958 | MR

[6] Generalized Functions, 2, Academic, New York, 1968 | MR

[7] De Gosson M., Symplectic geometry and quantum mechanics, Birkhäuser, Basel, 2006 | MR | Zbl

[8] Gracia-Bondía J.M., Lizzi F., Marmo G., Vitale P., “Infinitely many star products to play with”, J. High Energy Phys., 2002:04 (2002), 026 | MR

[9] L. Hörmander, The Analysis of Linear Partial Differential Operators. III: Pseudo-differential Operators, Springer, Berlin, 1985 | MR | Zbl

[10] Komatsu H., “Projective and injective limits of weakly compact sequences of locally convex spaces”, J. Math Soc. Japan, 19:3 (1967), 366–383 | MR | Zbl

[11] Komatsu H., “Ultradistributions. I: Structure theorems and a characterization”, J. Fac. Sci. Univ. Tokyo. Sect. IA, 20:1 (1973), 25–105 | MR | Zbl

[12] Köthe G., Topological vector spaces. II, Springer, New York, 1979 | MR | Zbl

[13] Maillard J.M., “On the twisted convolution product and the Weyl transformation of tempered distributions”, J. Geom. Phys., 3:2 (1986), 231–261 | MR | Zbl

[14] Meise R., Vogt D., Introduction to functional analysis, Clarendon, Oxford, 1997 | MR | Zbl

[15] V. P. Palamodov, “Fourier transforms of infinitely differentiable functions of rapid growth”, Tr. Mosk. Mat. Obshch., 11 (1962), 309–350 | MR | Zbl

[16] Pilipović S., Prangoski B., “Anti-Wick and Weyl quantization on ultradistribution spaces”, J. math. pures appl., 103:2 (2015), 472–503 | MR | Zbl

[17] Prangoski B., “Pseudodifferential operators of infinite order in spaces of tempered ultradistributions”, J. Pseudo-Diff. Oper. Appl., 4:4 (2013), 495–549 | MR | Zbl

[18] H. H. Schaefer, Topological Vector Spaces, MacMillan, New York, 1966 | MR | Zbl

[19] Soloviev M.A., “Noncommutativity and $\theta $-locality”, J. Phys. A: Math. Theor., 40:48 (2007), 14593–14604 | MR | Zbl

[20] Soloviev M.A., “Moyal multiplier algebras of the test function spaces of type $S$”, J. Math. Phys., 52:6 (2011), 063502 | MR | Zbl

[21] M. A. Soloviev, “Twisted convolution and Moyal star product of generalized functions”, Theor. Math. Phys., 172:1 (2012), 885–900 | MR | Zbl

[22] M. A. Soloviev, “Generalized Weyl correspondence and Moyal multiplier algebras”, Theor. Math. Phys., 173:1 (2012), 1359–1376 | MR | Zbl

[23] M. A. Soloviev, “Star products on symplectic vector spaces: Convergence, representations, and extensions”, Theor. Math. Phys., 181:3 (2014), 1612–1637 | MR | Zbl

[24] M. A. Soloviev, “Spaces of type $S$ as topological algebras under twisted convolution and star product”, Proc. Steklov Inst. Math., 306 (2019), 220–241 | MR | Zbl

[25] M. A. Soloviev, “Spaces of type $S$ and deformation quantization”, Theor. Math. Phys., 201:3 (2019), 1682–1700 | MR | Zbl

[26] Teofanov N., “Gelfand–Shilov spaces and localization operators”, Funct. Anal. Approx. Comput., 7:2 (2015), 135–158 | MR | Zbl

[27] V. V. Zharinov, “Compact families of locally convex topological vector spaces, Fréchet–Schwartz and dual Fréchet–Schwartz spaces”, Russ. Math. Surv., 34:4 (1979), 105–143 | MR | Zbl | Zbl