Characterization of the Moyal Multiplier Algebras for the Generalized Spaces of Type $S$
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 290-303

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the properties of the Moyal multiplier algebras for the generalized Gelfand–Shilov spaces $S^{b_n}_{a_k}$. We prove that these algebras contain Palamodov spaces of type $\mathscr E$, and establish continuity properties of the operators with Weyl symbols in this class. Analogous results are obtained for the projective version of the spaces of type $S$ and are extended to the multiplier algebras for various translation-invariant star products.
Mots-clés : deformation quantization, multiplier algebra
Keywords: Weyl symbols, Moyal product, Gelfand–Shilov spaces.
@article{TRSPY_2020_309_a19,
     author = {M. A. Soloviev},
     title = {Characterization of the {Moyal} {Multiplier} {Algebras} for the {Generalized} {Spaces} of {Type} $S$},
     journal = {Informatics and Automation},
     pages = {290--303},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a19/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Characterization of the Moyal Multiplier Algebras for the Generalized Spaces of Type $S$
JO  - Informatics and Automation
PY  - 2020
SP  - 290
EP  - 303
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a19/
LA  - ru
ID  - TRSPY_2020_309_a19
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Characterization of the Moyal Multiplier Algebras for the Generalized Spaces of Type $S$
%J Informatics and Automation
%D 2020
%P 290-303
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a19/
%G ru
%F TRSPY_2020_309_a19
M. A. Soloviev. Characterization of the Moyal Multiplier Algebras for the Generalized Spaces of Type $S$. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 290-303. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a19/