Conformal Totally Symmetric Arbitrary Spin Fermionic Fields
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 218-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conformal totally symmetric arbitrary spin fermionic fields propagating in the flat space–time of even dimension $d\ge 4$ are investigated. A first-derivative metric-like formulation involving the Fang–Fronsdal kinetic operator for such fields is developed. A gauge invariant Lagrangian and the corresponding gauge transformations are obtained. The gauge symmetries of the Lagrangian are realized by using auxiliary fields and the Stückelberg fields. A realization of the conformal algebra symmetries on the space of conformal gauge fermionic fields is obtained. The on-shell degrees of freedom of the fermionic arbitrary spin conformal fields are also studied.
@article{TRSPY_2020_309_a14,
     author = {R. R. Metsaev},
     title = {Conformal {Totally} {Symmetric} {Arbitrary} {Spin} {Fermionic} {Fields}},
     journal = {Informatics and Automation},
     pages = {218--234},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a14/}
}
TY  - JOUR
AU  - R. R. Metsaev
TI  - Conformal Totally Symmetric Arbitrary Spin Fermionic Fields
JO  - Informatics and Automation
PY  - 2020
SP  - 218
EP  - 234
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a14/
LA  - ru
ID  - TRSPY_2020_309_a14
ER  - 
%0 Journal Article
%A R. R. Metsaev
%T Conformal Totally Symmetric Arbitrary Spin Fermionic Fields
%J Informatics and Automation
%D 2020
%P 218-234
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a14/
%G ru
%F TRSPY_2020_309_a14
R. R. Metsaev. Conformal Totally Symmetric Arbitrary Spin Fermionic Fields. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 218-234. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a14/

[1] K. B. Alkalaev, “Mixed-symmetry massless gauge fields in $\mathrm {AdS}_5$”, Theor. Math. Phys., 149:1 (2006), 1338–1348 | MR | Zbl

[2] Alkalaev K., “FV-type action for $AdS_5$ mixed-symmetry fields”, J. High Energy Phys., 2011:03 (2011), 031 ; arXiv: 1011.6109 | MR | Zbl

[3] Alkalaev K., “Massless hook field in $AdS_{d+1}$ from the holographic perspective”, J. High Energy Phys., 2013:01 (2013), 018; arXiv: 1210.0217 | Zbl

[4] Alkalaev K., “Mixed-symmetry tensor conserved currents and AdS/CFT correspondence”, J. Phys. A: Math. Theor., 46:21 (2013), 214007 ; arXiv: 1207.1079 | MR | Zbl

[5] Alkalaev K., Grigoriev M., “Unified BRST approach to (partially) massless and massive AdS fields of arbitrary symmetry type”, Nucl. Phys. B, 853:3 (2011), 663–687 ; arXiv: 1105.6111 | MR | Zbl

[6] Alkalaev K.B., Shaynkman O.V., Vasiliev M.A., Frame-like formulation for free mixed-symmetry bosonic massless higher-spin fields in $AdS_d$, E-print, 2006, arXiv: hep-th/0601225 | MR | Zbl

[7] Bastianelli F., Bonezzi R., Corradini O., Latini E., “Effective action for higher spin fields on (A)dS backgrounds”, J. High Energy Phys., 2012:12 (2012), 113 ; arXiv: 1210.4649 | MR | Zbl | MR

[8] Becchi C., Rouet A., Stora R., “Renormalization of gauge theories”, Ann. Phys., 98:2 (1976), 287–321 | MR

[9] Bekaert X., Singletons and their maximal symmetry algebras, E-print, 2011, arXiv: 1111.4554 [math-ph] | MR | Zbl

[10] Bekaert X., Boulanger N., “Tensor gauge fields in arbitrary representations of $GL(D,\mathbb R)$. Duality and Poincaré lemma”, Commun. Math. Phys., 245:1 (2004), 27–67 ; arXiv: hep-th/0208058 | MR | Zbl

[11] Bekaert X., Boulanger N., “Tensor gauge fields in arbitrary representations of $GL(D,\mathbb R)$. II: Quadratic actions”, Commun. Math. Phys., 271:3 (2007), 723–773 ; arXiv: hep-th/0606198 | MR | Zbl

[12] Bekaert X., Boulanger N., Leclercq S., “Strong obstruction of the Berends–Burgers–van Dam spin-3 vertex”, J. Phys. A: Math. Theor., 43:18 (2010), 185401 ; arXiv: 1002.0289 | MR | Zbl

[13] Bekaert X., Grigoriev M., “Manifestly conformal descriptions and higher symmetries of bosonic singletons”, SIGMA, Symmetry Integrability Geom. Methods Appl., 6 (2010), 038 ; arXiv: 0907.3195 | MR | Zbl

[14] Bekaert X., Grigoriev M., “Notes on the ambient approach to boundary values of AdS gauge fields”, J. Phys. A: Math. Theor., 46:21 (2013), 214008 ; arXiv: 1207.3439 | MR | Zbl

[15] Bonezzi R., Latini E., Waldron A., “Gravity, two times, tractors, Weyl invariance, and six-dimensional quantum mechanics”, Phys. Rev. D, 82:6 (2010), 064037 ; arXiv: 1007.1724 | Zbl

[16] Boulanger N., Iazeolla C., Sundell P., “Unfolding mixed-symmetry fields in AdS and the BMV conjecture. I: General formalism”, J. High Energy Phys., 2009:07 (2009), 013 ; arXiv: 0812.3615 | MR

[17] Boulanger N., Iazeolla C., Sundell P., “Unfolding mixed-symmetry fields in AdS and the BMV conjecture. II: Oscillator realization”, J. High Energy Phys., 2009:07 (2009), 014 ; arXiv: 0812.4438 | MR

[18] Boulanger N., Henneaux M., “A derivation of Weyl gravity”, Ann. Phys., 10:11–12 (2001), 935–964 ; arXiv: hep-th/0106065 | MR | Zbl

[19] Boulanger N., Skvortsov E.D., “Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime”, J. High Energy Phys., 2011:09 (2011), 063 ; arXiv: 1107.5028 | MR | Zbl

[20] Boulanger N., Skvortsov E.D., Zinoviev Yu.M., “Gravitational cubic interactions for a simple mixed-symmetry gauge field in AdS and flat backgrounds”, J. Phys. A: Math. Theor., 44:41 (2011), 415403 ; arXiv: 1107.1872 | Zbl

[21] Buchbinder I.L., Galajinsky A.V., Krykhtin V.A., “Quartet unconstrained formulation for massless higher spin fields”, Nucl. Phys. B, 779:3 (2007), 155–177 ; arXiv: hep-th/0702161 | MR | Zbl

[22] Buchbinder I.L., Krykhtin V.A., “Gauge invariant Lagrangian construction for massive bosonic higher spin fields in D dimensions”, Nucl. Phys. B, 727:3 (2005), 537–563 ; arXiv: hep-th/0505092 | MR | Zbl

[23] Buchbinder I.L., Krykhtin V.A., Lavrov P.M., “Gauge invariant Lagrangian formulation of higher spin massive bosonic field theory in AdS space”, Nucl. Phys. B, 762:3 (2007), 344–376 ; arXiv: hep-th/0608005 | MR | Zbl

[24] Buchbinder I.L., Krykhtin V., Reshetnyak A., “BRST approach to Lagrangian construction for fermionic higher spin fields in AdS space”, Nucl. Phys. B, 787:3 (2007), 211–240 ; arXiv: hep-th/0703049 | MR | Zbl

[25] Buchbinder I.L., Lyahovich S.L., “Canonical quantisation and local measure of $R^2$ gravity”, Classical Quantum Gravity, 4:6 (1987), 1487–1501 | MR

[26] Buchbinder I.L., Reshetnyak A., “General Lagrangian formulation for higher spin fields with arbitrary index symmetry. I: Bosonic fields”, Nucl. Phys. B, 862:1 (2012), 270–326 ; arXiv: 1110.5044 | MR | Zbl

[27] Buchbinder I.L., Snegirev T.V., Zinoviev Yu.M., “Cubic interaction vertex of higher-spin fields with external electromagnetic field”, Nucl. Phys. B, 864:3 (2012), 694–721 ; arXiv: 1204.2341 | MR | Zbl

[28] Burdík Č., Reshetnyak A., “On representations of Higher Spin symmetry algebras for mixed-symmetry HS fields on AdS-spaces. Lagrangian formulation”, J. Phys., Conf. Ser., 343 (2012), 012102; arXiv: 1111.5516

[29] Campoleoni A., Francia D., “Maxwell-like Lagrangians for higher spins”, J. High Energy Phys., 2013:03 (2013), 168 ; arXiv: 1206.5877 | MR | Zbl

[30] Campoleoni A., Francia D., Mourad J., Sagnotti A., “Unconstrained higher spins of mixed symmetry. II: Fermi fields”, Nucl. Phys. B, 828:3 (2010), 405–514 ; arXiv: 0904.4447 | MR | Zbl

[31] Dempster P., Tsulaia M., “On the structure of quartic vertices for massless higher spin fields on Minkowski background”, Nucl. Phys. B, 865:2 (2012), 353–375 ; arXiv: 1203.5597 | MR | Zbl

[32] Deser S., Joung E., Waldron A., “Gravitational- and self-coupling of partially massless spin 2”, Phys. Rev. D, 86:10 (2012), 104004 ; arXiv: 1208.1307 | MR

[33] Dobrev V.K., “Invariant differential operators for non-compact Lie groups: Parabolic subalgebras”, Rev. Math. Phys., 20:4 (2008), 407–449 ; arXiv: hep-th/0702152 | MR | Zbl

[34] Dobrev V.K., Conservation laws for $SO(p,q)$, E-print, 2012, arXiv: 1210.8067 [math-ph] | MR

[35] Dobrev V.K., “Invariant differential operators for non-compact Lie algebras parabolically related to conformal Lie algebras”, J. High Energy Phys., 2013:02 (2013), 015 ; arXiv: 1208.0409 | MR | Zbl

[36] Dobrev V.K., Petkova V.B., “All positive energy unitary irreducible representations of extended conformal supersymmetry”, Phys. Lett. B, 162:1–3 (1985), 127–132 | MR

[37] Evans N.T., “Discrete series for the universal covering group of the $3+2$ dimensional de Sitter group”, J. Math. Phys., 8:2 (1967), 170–184 | MR | Zbl

[38] Fang J., Fronsdal C., “Massless fields with half-integral spin”, Phys. Rev. D, 18:10 (1978), 3630–3633 | MR

[39] Fotopoulos A., Irges N., Petkou A.C., Tsulaia M., “Higher spin gauge fields interacting with scalars: The Lagrangian cubic vertex”, J. High Energy Phys., 2007:10 (2007), 021 ; arXiv: 0708.1399 | MR

[40] Fotopoulos A., Panigrahi K.L., Tsulaia M., “Lagrangian formulation of higher spin theories on AdS space”, Phys. Rev. D, 74:8 (2006), 085029 ; arXiv: hep-th/0607248 | MR

[41] Fotopoulos A., Tsulaia M., “On the tensionless limit of string theory, off-shell higher spin interaction vertices and BCFW recursion relations”, J. High Energy Phys., 2010:11 (2010), 086 ; arXiv: 1009.0727 | MR | Zbl

[42] Fradkin E.S., Tseytlin A.A., “Conformal supergravity”, Phys. Rep., 119:4–5 (1985), 233–362 | MR

[43] Fradkin E.S., Vasiliev M.A., “On the gravitational interaction of massless higher-spin fields”, Phys. Lett. B, 189:1–2 (1987), 89–95 | MR | Zbl

[44] Francia D., Sagnotti A., “Free geometric equations for higher spins”, Phys. Lett. B, 543:3–4 (2002), 303–310 ; arXiv: hep-th/0207002 | MR | Zbl

[45] Francia D., Sagnotti A., “Minimal local Lagrangians for higher-spin geometry”, Phys. Lett. B, 624:1–2 (2005), 93–104 ; arXiv: hep-th/0507144 | MR | Zbl

[46] Grigoriev M., “Parent formulations, frame-like Lagrangians, and generalized auxiliary fields”, J. High Energy Phys., 2012:12 (2012), 048 ; arXiv: 1204.1793 | MR

[47] Grigoriev M., Waldron A., “Massive higher spins from BRST and tractors”, Nucl. Phys. B, 853:2 (2011), 291–326 ; arXiv: 1104.4994 | MR | Zbl

[48] Günaydin M., Minic D., Zagermann M., “4D doubleton conformal theories, $CPT$ and IIB strings on $\mathrm {AdS}_5\times \nobreak S^5$”, Nucl. Phys. B, 534:1–2 (1998), 96–120 ; arXiv: hep-th/9806042 | MR

[49] Hallowell K., Waldron A., “Constant curvature algebras and higher spin action generating functions”, Nucl. Phys. B, 724:3 (2005), 453–486 ; arXiv: hep-th/0505255 | MR | Zbl

[50] Henneaux M., Lucena Gómez G., Rahman R., “Higher-spin fermionic gauge fields and their electromagnetic coupling”, J. High Energy Phys., 2012:08 (2012), 093 ; arXiv: 1206.1048 | MR

[51] Joung E., Lopez L., Taronna M., “On the cubic interactions of massive and partially-massless higher spins in (A)dS”, J. High Energy Phys., 2012:07 (2012), 041 ; arXiv: 1203.6578 | MR

[52] Joung E., Lopez L., Taronna M., “Solving the Noether procedure for cubic interactions of higher spins in (A)dS”, J. Phys. A: Math. Theor., 46:21 (2013), 214020 ; arXiv: 1207.5520 | MR | Zbl

[53] Joung E., Mkrtchyan K., “A note on higher-derivative actions for free higher-spin fields”, J. High Energy Phys., 2012:11 (2012), 153 ; arXiv: 1209.4864 | MR | Zbl

[54] Joung E., Taronna M., “Cubic interactions of massless higher spins in (A)dS: Metric-like approach”, Nucl. Phys. B, 861:1 (2012), 145–174 ; arXiv: 1110.5918 | MR | Zbl

[55] Lee S.-C., van Nieuwenhuizen P., “Counting of states in higher-derivative field theories”, Phys. Rev. D, 26:4 (1982), 934–937 | MR

[56] Mack G., “All unitary ray representations of the conformal group $\mathrm {SU}(2,2)$ with positive energy”, Commun. Math. Phys., 55:1 (1977), 1–28 | MR | Zbl

[57] Manvelyan R., Mkrtchyan K., Rühl W., “A generating function for the cubic interactions of higher spin fields”, Phys. Lett. B, 696:4 (2011), 410–415 ; arXiv: 1009.1054 | MR | Zbl

[58] Manvelyan R., Mkrtchyan R., Rühl W., “Radial reduction and cubic interaction for higher spins in $(A)dS$ space”, Nucl. Phys. B, 872:2 (2013), 265–288 ; arXiv: 1210.7227 | MR | Zbl

[59] Metsaev R.R., “Generating function for cubic interaction vertices of higher spin fields in any dimension”, Mod. Phys. Lett. A, 8:25 (1993), 2413–2426 | MR | Zbl

[60] Metsaev R.R., “Massless mixed-symmetry bosonic free fields in $d$-dimensional anti-de Sitter space–time”, Phys. Lett. B, 354:1–2 (1995), 78–84 | MR

[61] Metsaev R.R., “All conformal invariant representations of $d$-dimensional anti-de Sitter group”, Mod. Phys. Lett. A, 10:23 (1995), 1719–1731 | MR | Zbl

[62] Metsaev R.R., “Cubic interaction vertices for massive and massless higher spin fields”, Nucl. Phys. B, 759:1–2 (2006), 147–201 ; arXiv: hep-th/0512342 | MR | Zbl

[63] Metsaev R.R., “Gauge invariant formulation of massive totally symmetric fermionic fields in (A)dS space”, Phys. Lett. B, 643:3–4 (2006), 205–212 ; arXiv: hep-th/0609029 | MR | Zbl

[64] Metsaev R.R., “Gravitational and higher-derivative interactions of a massive spin $5/2$ field in (A)dS space”, Phys. Rev. D, 77:2 (2008), 025032 ; arXiv: hep-th/0612279

[65] Metsaev R.R., “Shadows, currents, and AdS fields”, Phys. Rev. D, 78:10 (2008), 106010 ; arXiv: 0805.3472 | MR

[66] Metsaev R.R., “Conformal self-dual fields”, J. Phys. A: Math. Theor., 43:11 (2010), 115401 ; arXiv: 0812.2861 | MR | Zbl

[67] Metsaev R.R., “Gauge invariant two-point vertices of shadow fields, AdS/CFT, and conformal fields”, Phys. Rev. D, 81:10 (2010), 106002 ; arXiv: 0907.4678 | MR | Zbl

[68] Metsaev R.R., “Gauge invariant approach to low-spin anomalous conformal currents and shadow fields”, Phys. Rev. D, 83:10 (2011), 106004 ; arXiv: 1011.4261 | MR | Zbl

[69] Metsaev R.R., “Ordinary-derivative formulation of conformal low-spin fields”, J. High Energy Phys., 2012:01 (2012), 064 ; arXiv: 0707.4437 | MR | Zbl

[70] Metsaev R.R., “Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields”, J. High Energy Phys., 2012:06 (2012), 062 ; arXiv: 0709.4392 | MR

[71] Metsaev R.R., “Cubic interaction vertices for fermionic and bosonic arbitrary spin fields”, Nucl. Phys. B, 859:1 (2012), 13–69 ; arXiv: 0712.3526 | MR | Zbl

[72] Metsaev R.R., “Anomalous conformal currents, shadow fields, and massive AdS fields”, Phys. Rev. D, 85:12 (2012), 126011 ; arXiv: 1110.3749 | MR

[73] Metsaev R.R., “BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields”, Phys. Lett. B, 720:1–3 (2013), 237–243 ; arXiv: 1205.3131 | MR | Zbl

[74] Metsaev R.R., “The BRST-BV approach to conformal fields”, J. Phys. A: Math. Theor., 49:17 (2016), 175401 ; arXiv: 1511.01836 | MR | Zbl

[75] Moshin P.Yu., Reshetnyak A.A., “BRST approach to Lagrangian formulation for mixed-symmetry fermionic higher-spin fields”, J. High Energy Phys., 2007:10 (2007), 040 ; arXiv: 0707.0386 | MR | Zbl

[76] Polyakov D., “Gravitational couplings of higher spins from string theory”, Int. J. Mod. Phys. A, 25:24 (2010), 4623–4640 ; arXiv: 1005.5512 | MR | Zbl

[77] Polyakov D., “Higher spins and open strings: Quartic interactions”, Phys. Rev. D, 83:4 (2011), 046005 ; arXiv: 1011.0353

[78] Reshetnyak A., “General Lagrangian formulation for higher spin fields with arbitrary index symmetry. 2: Fermionic fields”, Nucl. Phys. B, 869:3 (2013), 523–597 ; arXiv: 1211.1273 | MR | Zbl

[79] Reshetnyak A.A., “Constrained BRST-BFV Lagrangian formulations for higher spin fields in Minkowski spaces”, J. High Energy Phys., 2018:09 (2018), 104 ; arXiv: 1803.04678 | MR

[80] Rod Gover A., Latini E., Waldron A., Poincaré–Einstein holography for forms via conformal geometry in the bulk, Mem. AMS, 235, no. 1106, Amer. Math. Soc., Providence, RI, 2015 ; arXiv: 1205.3489 | MR

[81] Sagnotti A., Taronna M., “String lessons for higher-spin interactions”, Nucl. Phys. B, 842:3 (2011), 299–361 ; arXiv: 1006.5242 | MR | Zbl

[82] Sagnotti A., Tsulaia M., “On higher spins and the tensionless limit of string theory”, Nucl. Phys. B, 682:1–2 (2004), 83–116 ; arXiv: hep-th/0311257 | MR | Zbl

[83] Segal A.Y., “Conformal higher spin theory”, Nucl. Phys. B, 664:1–2 (2003), 59–130 ; arXiv: hep-th/0207212 | MR | Zbl

[84] Shaynkman O.V., Tipunin I.Yu., Vasiliev M.A., “Unfolded form of conformal equations in $M$ dimensions and $\mathfrak o(M+2)$-modules”, Rev. Math. Phys., 18:8 (2006), 823–886 ; arXiv: hep-th/0401086 | MR | Zbl

[85] Siegel W., “All free conformal representations in all dimensions”, Int. J. Mod. Phys. A, 4:8 (1989), 2015–2020 | MR

[86] Skvortsov E.D., “Mixed-symmetry massless fields in Minkowski space unfolded”, J. High Energy Phys., 2008:07 (2008), 004 ; arXiv: 0801.2268 | MR

[87] Skvortsov E.D., “Gauge fields in $(A)dS_d$ within the unfolded approach: Algebraic aspects”, J. High Energy Phys., 2010:01 (2010), 106 ; arXiv: 0910.3334 | MR | Zbl

[88] Skvortsov E.D., Zinoviev Yu.M., “Frame-like actions for massless mixed-symmetry fields in Minkowski space. Fermions”, Nucl. Phys. B, 843:3 (2011), 559–569 ; arXiv: 1007.4944 | MR | Zbl

[89] A. A. Slavnov, “Ward identities in gauge theories”, Theor. Math. Phys., 10:2 (1972), 99–104

[90] Taronna M., “Higher-spin interactions: Four-point functions and beyond”, J. High Energy Phys., 2012:04 (2012), 029 ; arXiv: 1107.5843 | MR | Zbl

[91] Taylor J.C., “Ward identities and charge renormalization of the Yang–Mills field”, Nucl. Phys. B, 33:2 (1971), 436–444 | MR

[92] Tyutin I.V., Gauge invariance in field theory and statistical physics in operator formalism, E-print, 2008, arXiv: 0812.0580

[93] Vasiliev M.A., “Free massless fermionic fields of arbitrary spin in $d$-dimensional anti-de Sitter space”, Nucl. Phys. B, 301:1 (1988), 26–68 | MR

[94] Vasiliev M.A., “Bosonic conformal higher-spin fields of any symmetry”, Nucl. Phys. B, 829:1–2 (2010), 176–224 ; arXiv: 0909.5226 | MR | Zbl

[95] Vasiliev M.A., “Cubic vertices for symmetric higher-spin gauge fields in $(A)dS_d$”, Nucl. Phys. B, 862:2 (2012), 341–408 ; arXiv: 1108.5921 | MR | Zbl

[96] Zinoviev Yu.M., On massive high spin particles in (A)dS, E-print, 2001, arXiv: hep-th/0108192

[97] Zinoviev Yu.M., First order formalism for massive mixed symmetry tensor fields in Minkowski and (A)dS spaces, E-print, 2003, arXiv: hep-th/0306292