Nonrelativistic Limit of the Bosonic String
Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 198-209

Voir la notice de l'article provenant de la source Math-Net.Ru

An action for the nonrelativistic string is proposed that is invariant under general coordinate transformations on the string worldsheet. Hamiltonian formalism for the nonrelativistic string is given. Particular solutions of the Euler–Lagrange equations are found in the time gauge.
@article{TRSPY_2020_309_a12,
     author = {M. O. Katanaev},
     title = {Nonrelativistic {Limit} of the {Bosonic} {String}},
     journal = {Informatics and Automation},
     pages = {198--209},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a12/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Nonrelativistic Limit of the Bosonic String
JO  - Informatics and Automation
PY  - 2020
SP  - 198
EP  - 209
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a12/
LA  - ru
ID  - TRSPY_2020_309_a12
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Nonrelativistic Limit of the Bosonic String
%J Informatics and Automation
%D 2020
%P 198-209
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a12/
%G ru
%F TRSPY_2020_309_a12
M. O. Katanaev. Nonrelativistic Limit of the Bosonic String. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 198-209. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a12/