Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_309_a10, author = {A. S. Holevo}, title = {Schatten {Class} {Operators} in a {Representation} {Space} of {Canonical} {Commutation} {Relations}}, journal = {Informatics and Automation}, pages = {165--173}, publisher = {mathdoc}, volume = {309}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a10/} }
A. S. Holevo. Schatten Class Operators in a Representation Space of Canonical Commutation Relations. Informatics and Automation, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 165-173. http://geodesic.mathdoc.fr/item/TRSPY_2020_309_a10/
[1] Agmon S., “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Commun. Pure Appl. Math., 15 (1962), 119–147 | MR | Zbl
[2] Beigi S., “Sandwiched Rényi divergence satisfies data processing inequality”, J. Math. Phys., 54:12 (2013), 122202 | MR | Zbl
[3] De Palma G., Trevisan D., Giovannetti V., Ambrosio L., “Gaussian optimizers for entropic inequalities in quantum information”, J. Math. Phys., 59:8 (2018), 081101 | MR | Zbl
[4] Frank R.L., Lieb E.H., “Norms of quantum Gaussian multi-mode channels”, J. Math. Phys., 58:6 (2017), 062204 | MR | Zbl
[5] Gohberg I., Goldberg S., Krupnik N., Traces and determinants of linear operators, Oper. Theory: Adv. Appl., 116, Birkhäuser, Basel, 2000 | MR | Zbl
[6] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Transl. Math. Monogr., 18, Am. Math. Soc., Providence, RI, 1969 | MR
[7] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed., Edizioni della Normale, Pisa, 2011 | MR | Zbl
[8] A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory”, Russ. Math. Surv., 70:2 (2015), 331–367 | MR | Zbl
[9] J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics, W.A. Benjamin, New York, 1968 | MR
[10] V. I. Paraska, “On the asymptotics of eigenvalues and singular numbers of linear smoothing operators”, Am. Math. Soc. Transl., Ser. 2, 79 (1969), 87–95 | MR | Zbl | Zbl