Singularities of Multivalued Solutions of Quasilinear Hyperbolic Systems
Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 76-87
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the singularities of multivalued solutions of a quasilinear hyperbolic system with two independent and two dependent variables that satisfies the strong nonlinearity condition. For such solutions we obtain a local left–right classification of their projections onto the plane of independent variables at points of finite multiplicity of rank $1$.
Keywords:
quasilinear hyperbolic system, multivalued solution, strong nonlinearity condition, singularity of a projection, germ of finite multiplicity, left–right classification.
Mots-clés : gradient catastrophe
Mots-clés : gradient catastrophe
@article{TRSPY_2020_308_a5,
author = {I. A. Bogaevsky and D. V. Tunitsky},
title = {Singularities of {Multivalued} {Solutions} of {Quasilinear} {Hyperbolic} {Systems}},
journal = {Informatics and Automation},
pages = {76--87},
publisher = {mathdoc},
volume = {308},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a5/}
}
TY - JOUR AU - I. A. Bogaevsky AU - D. V. Tunitsky TI - Singularities of Multivalued Solutions of Quasilinear Hyperbolic Systems JO - Informatics and Automation PY - 2020 SP - 76 EP - 87 VL - 308 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a5/ LA - ru ID - TRSPY_2020_308_a5 ER -
I. A. Bogaevsky; D. V. Tunitsky. Singularities of Multivalued Solutions of Quasilinear Hyperbolic Systems. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 76-87. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a5/