Singularities of Multivalued Solutions of Quasilinear Hyperbolic Systems
Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 76-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the singularities of multivalued solutions of a quasilinear hyperbolic system with two independent and two dependent variables that satisfies the strong nonlinearity condition. For such solutions we obtain a local left–right classification of their projections onto the plane of independent variables at points of finite multiplicity of rank $1$.
Keywords: quasilinear hyperbolic system, multivalued solution, strong nonlinearity condition, singularity of a projection, germ of finite multiplicity, left–right classification.
Mots-clés : gradient catastrophe
@article{TRSPY_2020_308_a5,
     author = {I. A. Bogaevsky and D. V. Tunitsky},
     title = {Singularities of {Multivalued} {Solutions} of {Quasilinear} {Hyperbolic} {Systems}},
     journal = {Informatics and Automation},
     pages = {76--87},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a5/}
}
TY  - JOUR
AU  - I. A. Bogaevsky
AU  - D. V. Tunitsky
TI  - Singularities of Multivalued Solutions of Quasilinear Hyperbolic Systems
JO  - Informatics and Automation
PY  - 2020
SP  - 76
EP  - 87
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a5/
LA  - ru
ID  - TRSPY_2020_308_a5
ER  - 
%0 Journal Article
%A I. A. Bogaevsky
%A D. V. Tunitsky
%T Singularities of Multivalued Solutions of Quasilinear Hyperbolic Systems
%J Informatics and Automation
%D 2020
%P 76-87
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a5/
%G ru
%F TRSPY_2020_308_a5
I. A. Bogaevsky; D. V. Tunitsky. Singularities of Multivalued Solutions of Quasilinear Hyperbolic Systems. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 76-87. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a5/

[1] V. I. Arnol'd, “Indices of singular points of 1-forms on a manifold with boundary, convolution of invariants of reflection groups, and singular projections of smooth surfaces”, Russ. Math. Surv., 34:2 (1979), 1–42 | DOI | MR | Zbl | Zbl

[2] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, v. 1, Monogr. Math., 82, The Classification of Critical Points, Caustics and Wave Fronts, Birkhäuser, Boston, 1985 | MR | Zbl

[3] V. I. Arnol'd, V. V. Goryunov, O. V. Lyashko, and V. A. Vassil'ev, Singularity Theory. I: Local and Global Theory, Encycl. Math. Sci., 6, Dynamical Systems VI, Springer, Berlin, 1993

[4] V. I. Arnol'd, V. V. Goryunov, O. V. Lyashko, and V. A. Vassil'ev, Singularity Theory. II: Classification and Applications, Encycl. Math. Sci., 39, Dynamical Systems VIII, Springer, Berlin, 1993 | Zbl

[5] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969 | MR | Zbl

[6] Bogaevsky I.A., “New singularities and perestroikas of fronts of linear waves”, Moscow Math. J., 3:3 (2003), 807–821 | DOI | MR | Zbl

[7] Bogaevski I.A., Ishikawa G., “Lagrange mappings of the first open Whitney umbrella”, Pac. J. Math., 203:1 (2002), 115–138 | DOI | MR | Zbl

[8] G. G. Chernyi, Gas Dynamics, CRC Press, Boca Raton, FL, 1994

[9] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Grad. Texts Math., 14, Springer, New York, 1973 | DOI | MR | MR | Zbl

[10] V. V. Goryunov, “Singularities of projections of full intersections”, J. Sov. Math., 27:3 (1984), 2785–2811 | DOI | MR | Zbl

[11] Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Encycl. Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[12] Lax P.D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS–NSF Reg. Conf. Ser. Appl. Math., 11, SIAM, Philadelphia, PA, 1973 | MR | Zbl

[13] A. Kh. Rakhimov, “Singularities of Riemannian invariants”, Funct. Anal. Appl., 27:1 (1993), 39–50 | DOI | MR | Zbl

[14] Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Transl. Math. Monogr., 55, Am. Math. Soc., Providence, RI, 1983 | DOI | MR | MR

[15] D. V. Tunitskii, “Hyperbolic Monge–Ampère systems”, Sb. Math., 197:8 (2006), 1223–1258 | DOI | DOI | MR | Zbl

[16] D. V. Tunitsky, “On the global solubility of the Cauchy problem for hyperbolic Monge–Ampère systems”, Izv. Math., 82:5 (2018), 1019–1075 | DOI | DOI | MR | Zbl

[17] A. M. Vinogradov, “Multivalued solutions and a principle of classification of nonlinear differential equations”, Sov. Math., Dokl., 14 (1973), 661–665 | MR | Zbl

[18] Wall C.T.C., “Finite determinacy of smooth map-germs”, Bull. London Math. Soc., 13:6 (1981), 481–539 | DOI | MR | Zbl