Coincidence Points and Generalized Coincidence Points of Two Set-Valued Mappings
Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 42-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider set-valued mappings acting in metric spaces and show that, under natural general assumptions, the set of coincidence points of two such mappings one of which is covering and the other is Lipschitz continuous is dense in the set of generalized coincidence points of these mappings. We use this result to study the coincidence points and generalized coincidence points of a set-valued covering mapping and a set-valued Lipschitz mapping that depend on a parameter. In particular, we obtain conditions that guarantee the existence of a coincidence point for all values of the parameter under the assumption that a coincidence point exists for one value of the parameter.
Keywords: coincidence point, generalized coincidence point, covering set-valued mapping.
@article{TRSPY_2020_308_a2,
     author = {A. V. Arutyunov and E. S. Zhukovskiy and S. E. Zhukovskiy},
     title = {Coincidence {Points} and {Generalized} {Coincidence} {Points} of {Two} {Set-Valued} {Mappings}},
     journal = {Informatics and Automation},
     pages = {42--49},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a2/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - E. S. Zhukovskiy
AU  - S. E. Zhukovskiy
TI  - Coincidence Points and Generalized Coincidence Points of Two Set-Valued Mappings
JO  - Informatics and Automation
PY  - 2020
SP  - 42
EP  - 49
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a2/
LA  - ru
ID  - TRSPY_2020_308_a2
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A E. S. Zhukovskiy
%A S. E. Zhukovskiy
%T Coincidence Points and Generalized Coincidence Points of Two Set-Valued Mappings
%J Informatics and Automation
%D 2020
%P 42-49
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a2/
%G ru
%F TRSPY_2020_308_a2
A. V. Arutyunov; E. S. Zhukovskiy; S. E. Zhukovskiy. Coincidence Points and Generalized Coincidence Points of Two Set-Valued Mappings. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 42-49. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a2/

[1] A. V. Arutyunov, “Covering mappings in metric spaces and fixed points”, Dokl. Math., 76:2 (2007), 665–668 | DOI | MR | Zbl

[2] A. V. Arutyunov, Lectures on Convex and Multivalued Analysis, Fizmatlit, Moscow, 2014 (in Russian)

[3] Arutyunov A., Avakov E., Gel'man B., Dmitruk A., Obukhovskii V., “Locally covering maps in metric spaces and coincidence points”, J. Fixed Point Theory Appl., 5:1 (2009), 105–127 | DOI | MR | Zbl

[4] Arutyunov A., de Oliveira V.A., Pereira F.L., Zhukovskiy E., Zhukovskiy S., “On the solvability of implicit differential inclusions”, Appl. Anal., 94:1 (2015), 129–143 | DOI | MR | Zbl

[5] Arutyunov A.V., Gel'man B.D., Zhukovskiy E.S., Zhukovskiy S.E., “Caristi-like condition. Existence of solutions to equations and minima of functions in metric spaces”, Fixed Point Theory, 20:1 (2019), 31–58 | DOI | MR | Zbl

[6] Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E., “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Anal. Theory Methods Appl., 75:3 (2012), 1026–1044 | DOI | MR | Zbl

[7] E. R. Avakov, A. V. Arutyunov, and E. S. Zhukovskii, “Covering mappings and their applications to differential equations unsolved for the derivative”, Diff. Eqns., 45:5 (2009), 627–649 | MR | MR | Zbl

[8] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, Introduction to the Theory of Multi-valued Mappings and Differential Inclusions, 2nd ed., Librokom, Moscow, 2011 (in Russian) | MR

[9] Granas A., Dugundji J., Fixed point theory, Springer, New York, 2003 | MR | Zbl

[10] Mordukhovich B.S., Wang B., “Restrictive metric regularity and generalized differential calculus in Banach spaces”, Int. J. Math. Math. Sci., 2004:50 (2004), 2653–2680 | DOI | MR | Zbl