Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph
Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 265-275

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a variable-velocity wave equation on the simplest decorated graph obtained by gluing a ray to the three-dimensional Euclidean space, with localized initial conditions on the ray. The wave operator should be self-adjoint, which implies some boundary conditions at the gluing point. We describe the leading part of the asymptotic solution of the problem using the construction of the Maslov canonical operator. The result is obtained for all possible boundary conditions at the gluing point.
@article{TRSPY_2020_308_a19,
     author = {A. V. Tsvetkova and A. I. Shafarevich},
     title = {Localized {Asymptotic} {Solution} of a {Variable-Velocity} {Wave} {Equation} on the {Simplest} {Decorated} {Graph}},
     journal = {Informatics and Automation},
     pages = {265--275},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a19/}
}
TY  - JOUR
AU  - A. V. Tsvetkova
AU  - A. I. Shafarevich
TI  - Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph
JO  - Informatics and Automation
PY  - 2020
SP  - 265
EP  - 275
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a19/
LA  - ru
ID  - TRSPY_2020_308_a19
ER  - 
%0 Journal Article
%A A. V. Tsvetkova
%A A. I. Shafarevich
%T Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph
%J Informatics and Automation
%D 2020
%P 265-275
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a19/
%G ru
%F TRSPY_2020_308_a19
A. V. Tsvetkova; A. I. Shafarevich. Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 265-275. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a19/