Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_308_a16, author = {V. V. Palin}, title = {On the {Structure} of {Solutions} to a {Model} {System} {That} {Is} {Nonstrictly} {Hyperbolic} in the {Sense} of {Petrovskii}}, journal = {Informatics and Automation}, pages = {232--242}, publisher = {mathdoc}, volume = {308}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a16/} }
TY - JOUR AU - V. V. Palin TI - On the Structure of Solutions to a Model System That Is Nonstrictly Hyperbolic in the Sense of Petrovskii JO - Informatics and Automation PY - 2020 SP - 232 EP - 242 VL - 308 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a16/ LA - ru ID - TRSPY_2020_308_a16 ER -
V. V. Palin. On the Structure of Solutions to a Model System That Is Nonstrictly Hyperbolic in the Sense of Petrovskii. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 232-242. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a16/
[1] Burago D., Burago Yu., Ivanov S., A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl
[2] Danilov V.G., Shelkovich V.M., “Delta-shock wave type solution of hyperbolic systems of conservation laws”, Q. Appl. Math., 63:3 (2005), 401–427 | DOI | MR
[3] L. C. Evans, Partial Differential Equations, Grad. Stud. Math., 19, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl
[4] P. D. Lax, Hyperbolic Partial Differential Equations, Courant Lect. Notes Math., 14, Am. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl
[5] V. V. Palin, “Geometric solutions of the Riemann problem for the scalar conservation law”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 22:4 (2018), 620–646 | DOI | MR | Zbl