Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_308_a13, author = {A. N. Kanatnikov and A. P. Krishchenko}, title = {Qualitative {Properties} of a {Duffing} {System} with {Polynomial} {Nonlinearity}}, journal = {Informatics and Automation}, pages = {197--209}, publisher = {mathdoc}, volume = {308}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a13/} }
TY - JOUR AU - A. N. Kanatnikov AU - A. P. Krishchenko TI - Qualitative Properties of a Duffing System with Polynomial Nonlinearity JO - Informatics and Automation PY - 2020 SP - 197 EP - 209 VL - 308 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a13/ LA - ru ID - TRSPY_2020_308_a13 ER -
A. N. Kanatnikov; A. P. Krishchenko. Qualitative Properties of a Duffing System with Polynomial Nonlinearity. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 197-209. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a13/
[1] Chen H., Li Y., “Bifurcation and stability of periodic solutions of Duffing equations”, Nonlinearity, 21:11 (2008), 2485–2503 | DOI | MR | Zbl
[2] Cheng Z., Ren J., “Harmonic and subharmonic solutions for superlinear damped Duffing equation”, Nonlinear Anal. Real World Appl., 14:2 (2013), 1155–1170 | DOI | MR | Zbl
[3] Clemson P.T., Stefanovska A., “Discerning non-autonomous dynamics”, Phys. Rep., 542:4 (2014), 297–368 | DOI | MR
[4] Guo K.-M., Jiang J., “Stochastic sensitivity analysis of periodic attractors in non-autonomous nonlinear dynamical systems based on stroboscopic map”, Phys. Lett. A, 378:34 (2014), 2518–2523 | DOI | MR | Zbl
[5] A. N. Kanatnikov, “Localization of control robust invariant compact sets in continuous systems”, Diff. Eqns., 50:11 (2014), 1560–1564 | DOI | MR | Zbl
[6] A. N. Kanatnikov, “Localization of invariant compact sets in differential inclusions”, Diff. Eqns., 51:11 (2015), 1425–1431 | DOI | MR | Zbl
[7] A. N. Kanatnikov, S. K. Korovin, and A. P. Krishchenko, “Localization of invariant compact sets of discrete systems”, Dokl. Math., 81:2 (2010), 326–328 | DOI | MR | Zbl
[8] A. N. Kanatnikov, S. K. Korovin, and A. P. Krishchenko, “Localization of compact invariant sets of discrete-time systems with disturbances”, Dokl. Math., 83:3 (2011), 433–435 | DOI | MR | Zbl
[9] A. N. Kanatnikov and A. P. Krishchenko, “Localization of invariant compact sets of nonautonomous systems”, Diff. Eqns., 45:1 (2009), 46–52 | MR | Zbl
[10] Kanatnikov A.N., Krishchenko A.P., “Localization of compact invariant sets of discrete-time nonlinear systems”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 21:7 (2011), 2057–2065 | DOI | MR | Zbl
[11] A. N. Kanatnikov and A. P. Krishchenko, “Localization of compact invariant sets of continuous-time systems with disturbance”, Dokl. Math., 86:2 (2012), 720–722 | DOI | MR | Zbl
[12] A. P. Krishchenko, “Localization of limit cycles”, Diff. Eqns., 31:11 (1995), 1826–1833 | MR | Zbl
[13] A. P. Krishchenko, “Localization of simple and complex dynamics in nonlinear systems”, Diff. Eqns., 51:11 (2015), 1432–1439 | DOI | MR | MR | Zbl
[14] A. P. Krishchenko, “Global asymptotic stability analysis by the localization method of invariant compact sets”, Diff. Eqns., 52:11 (2016), 1403–1410 | DOI | MR | Zbl
[15] Krishchenko A.P., Starkov K.E., “Localization of compact invariant sets of nonlinear time-varying systems”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 18:5 (2008), 1599–1604 | DOI | MR
[16] A. G. Kurosh, Course of Higher Algebra, Nauka, Moscow, 1968 (in Russian) | MR
[17] Starkov K.E., “On the ultimate dynamics of the four-dimensional Rössler system”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 24:11 (2014), 1450149 | DOI | MR | Zbl
[18] Starkov K.E., Coria L.N., “Global dynamics of the Kirschner–Panetta model for the tumor immunotherapy”, Nonlinear Anal. Real World Appl., 14:3 (2013), 1425–1433 | DOI | MR | Zbl
[19] Wang C., “The lower bounds of $T$-periodic solutions for the forced Duffing equation”, J. Math. Anal. Appl., 260:2 (2001), 507–516 | DOI | MR | Zbl