Qualitative Properties of a Duffing System with Polynomial Nonlinearity
Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 197-209

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the qualitative analysis of a nonautonomous Duffing equation with nonlinearity in the form of a monomial of odd degree. For all values of the parameters, compact localizing sets containing all compact invariant sets of the system are constructed. The behavior of the trajectories of the system outside the localizing set is analyzed, and it is shown that the trajectories of the system obey one of four scenarios.
@article{TRSPY_2020_308_a13,
     author = {A. N. Kanatnikov and A. P. Krishchenko},
     title = {Qualitative {Properties} of a {Duffing} {System} with {Polynomial} {Nonlinearity}},
     journal = {Informatics and Automation},
     pages = {197--209},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a13/}
}
TY  - JOUR
AU  - A. N. Kanatnikov
AU  - A. P. Krishchenko
TI  - Qualitative Properties of a Duffing System with Polynomial Nonlinearity
JO  - Informatics and Automation
PY  - 2020
SP  - 197
EP  - 209
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a13/
LA  - ru
ID  - TRSPY_2020_308_a13
ER  - 
%0 Journal Article
%A A. N. Kanatnikov
%A A. P. Krishchenko
%T Qualitative Properties of a Duffing System with Polynomial Nonlinearity
%J Informatics and Automation
%D 2020
%P 197-209
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a13/
%G ru
%F TRSPY_2020_308_a13
A. N. Kanatnikov; A. P. Krishchenko. Qualitative Properties of a Duffing System with Polynomial Nonlinearity. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 197-209. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a13/