Derivation Algebra in Noncommutative Group Algebras
Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 28-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a generally infinite noncommutative discrete group $G$, we study derivation algebras in the group algebra of $G$ in terms of characters on a groupoid associated with the group. We obtain necessary conditions for a character to define a derivation. Using these conditions, we analyze some examples. In particular, we describe a derivation algebra in the case when the group is a nilpotent group of rank $2$.
@article{TRSPY_2020_308_a1,
     author = {A. A. Arutyunov},
     title = {Derivation {Algebra} in {Noncommutative} {Group} {Algebras}},
     journal = {Informatics and Automation},
     pages = {28--41},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a1/}
}
TY  - JOUR
AU  - A. A. Arutyunov
TI  - Derivation Algebra in Noncommutative Group Algebras
JO  - Informatics and Automation
PY  - 2020
SP  - 28
EP  - 41
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a1/
LA  - ru
ID  - TRSPY_2020_308_a1
ER  - 
%0 Journal Article
%A A. A. Arutyunov
%T Derivation Algebra in Noncommutative Group Algebras
%J Informatics and Automation
%D 2020
%P 28-41
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a1/
%G ru
%F TRSPY_2020_308_a1
A. A. Arutyunov. Derivation Algebra in Noncommutative Group Algebras. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 28-41. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a1/

[1] A. A. Arutyunov, “Reduction of nonlocal pseudodifferential operators on a noncompact manifold to classical pseudodifferential operators on a double-dimensional compact manifold”, Math. Notes, 97:4 (2015), 502–509 | DOI | DOI | MR | Zbl

[2] A. A. Arutyunov and A. S. Mishchenko, “A smooth version of Johnson's problem on derivations of group algebras”, Sb. Math., 210:6 (2019), 756–782 | DOI | DOI | MR | Zbl

[3] A. A. Arutyunov, A. S. Mishchenko, and A. I. Shtern, “Derivations of group algebras”, Fundam. Prikl. Mat., 21:6 (2016), 65–78 | MR

[4] Burghelea D., “The cyclic homology of the group rings”, Coment. math. Helv., 60 (1985), 354–365 | DOI | MR | Zbl

[5] A. V. Ershov, Categories and Functors, Nauka, Saratov, 2012 (in Russian)

[6] Johnson B.E., “The derivation problem for group algebras of connected locally compact groups”, J. London Math. Soc. Ser. 2, 63:2 (2001), 441–452 | DOI | MR | Zbl

[7] Loday J.-L., Cyclic homology, Springer, Berlin, 1998 | MR | Zbl

[8] Losert V., “The derivation problem for group algebras”, Ann. Math. Ser. 2, 168:1 (2008), 221–246 | DOI | MR | Zbl

[9] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, 1977 | MR | Zbl

[10] S. Mac Lane, Categories for the Working Mathematician, Grad. Texts Math., 5, Springer, New York, 1998 | MR | Zbl