Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2020_308_a1, author = {A. A. Arutyunov}, title = {Derivation {Algebra} in {Noncommutative} {Group} {Algebras}}, journal = {Informatics and Automation}, pages = {28--41}, publisher = {mathdoc}, volume = {308}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a1/} }
A. A. Arutyunov. Derivation Algebra in Noncommutative Group Algebras. Informatics and Automation, Differential equations and dynamical systems, Tome 308 (2020), pp. 28-41. http://geodesic.mathdoc.fr/item/TRSPY_2020_308_a1/
[1] A. A. Arutyunov, “Reduction of nonlocal pseudodifferential operators on a noncompact manifold to classical pseudodifferential operators on a double-dimensional compact manifold”, Math. Notes, 97:4 (2015), 502–509 | DOI | DOI | MR | Zbl
[2] A. A. Arutyunov and A. S. Mishchenko, “A smooth version of Johnson's problem on derivations of group algebras”, Sb. Math., 210:6 (2019), 756–782 | DOI | DOI | MR | Zbl
[3] A. A. Arutyunov, A. S. Mishchenko, and A. I. Shtern, “Derivations of group algebras”, Fundam. Prikl. Mat., 21:6 (2016), 65–78 | MR
[4] Burghelea D., “The cyclic homology of the group rings”, Coment. math. Helv., 60 (1985), 354–365 | DOI | MR | Zbl
[5] A. V. Ershov, Categories and Functors, Nauka, Saratov, 2012 (in Russian)
[6] Johnson B.E., “The derivation problem for group algebras of connected locally compact groups”, J. London Math. Soc. Ser. 2, 63:2 (2001), 441–452 | DOI | MR | Zbl
[7] Loday J.-L., Cyclic homology, Springer, Berlin, 1998 | MR | Zbl
[8] Losert V., “The derivation problem for group algebras”, Ann. Math. Ser. 2, 168:1 (2008), 221–246 | DOI | MR | Zbl
[9] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, 1977 | MR | Zbl
[10] S. Mac Lane, Categories for the Working Mathematician, Grad. Texts Math., 5, Springer, New York, 1998 | MR | Zbl