On Germs of Finite Morphisms of Smooth Surfaces
Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 100-131

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions related to deformations of germs of finite morphisms of smooth surfaces are discussed. Four-sheeted finite cover germs $F: (U,o')\to (V,o)$, where $(U,o')$ and $(V,o)$ are two germs of smooth complex analytic surfaces, are classified up to smooth deformations. The singularity types of branch curves and the local monodromy groups of these germs are also investigated.
@article{TRSPY_2019_307_a4,
     author = {Vik. S. Kulikov},
     title = {On {Germs} of {Finite} {Morphisms} of {Smooth} {Surfaces}},
     journal = {Informatics and Automation},
     pages = {100--131},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a4/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On Germs of Finite Morphisms of Smooth Surfaces
JO  - Informatics and Automation
PY  - 2019
SP  - 100
EP  - 131
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a4/
LA  - ru
ID  - TRSPY_2019_307_a4
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On Germs of Finite Morphisms of Smooth Surfaces
%J Informatics and Automation
%D 2019
%P 100-131
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a4/
%G ru
%F TRSPY_2019_307_a4
Vik. S. Kulikov. On Germs of Finite Morphisms of Smooth Surfaces. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 100-131. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a4/