Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_307_a15, author = {Nikolai A. Tyurin}, title = {Monotonic {Lagrangian} {Tori} of {Standard} and {Nonstandard} {Types} in {Toric} and {Pseudotoric} {Fano} {Varieties}}, journal = {Informatics and Automation}, pages = {291--305}, publisher = {mathdoc}, volume = {307}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a15/} }
TY - JOUR AU - Nikolai A. Tyurin TI - Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties JO - Informatics and Automation PY - 2019 SP - 291 EP - 305 VL - 307 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a15/ LA - ru ID - TRSPY_2019_307_a15 ER -
Nikolai A. Tyurin. Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 291-305. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a15/
[1] N. A. Tyurin, “Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations”, Russ. Math. Surv., 72:3 (2017), 513–546 | DOI | DOI | MR | Zbl
[2] N. A. Tyurin, “Universal Maslov class of a Bohr–Sommerfeld Lagrangian embedding into a pseudo-Einstein manifold”, Theor. Math. Phys., 150:2 (2007), 278–287 | DOI | DOI | MR | Zbl
[3] Audin M., Torus actions on symplectic manifolds, Prog. Math., 93, Birkhäuser, Basel, 2004 | MR | Zbl