Complex Tori, Theta Groups and Their Jordan Properties
Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 32-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that an analog of Jordan's theorem on finite subgroups of general linear groups does not hold for the group of bimeromorphic automorphisms of a product of the complex projective line and a complex torus of positive algebraic dimension.
Keywords: complex tori, theta groups, Jordan properties.
@article{TRSPY_2019_307_a1,
     author = {Yuri G. Zarhin},
     title = {Complex {Tori,} {Theta} {Groups} and {Their} {Jordan} {Properties}},
     journal = {Informatics and Automation},
     pages = {32--62},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a1/}
}
TY  - JOUR
AU  - Yuri G. Zarhin
TI  - Complex Tori, Theta Groups and Their Jordan Properties
JO  - Informatics and Automation
PY  - 2019
SP  - 32
EP  - 62
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a1/
LA  - ru
ID  - TRSPY_2019_307_a1
ER  - 
%0 Journal Article
%A Yuri G. Zarhin
%T Complex Tori, Theta Groups and Their Jordan Properties
%J Informatics and Automation
%D 2019
%P 32-62
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a1/
%G ru
%F TRSPY_2019_307_a1
Yuri G. Zarhin. Complex Tori, Theta Groups and Their Jordan Properties. Informatics and Automation, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 32-62. http://geodesic.mathdoc.fr/item/TRSPY_2019_307_a1/

[1] Bandman T., Zarhin Yu.G., “Jordan groups, conic bundles and abelian varieties”, Algebr. Geom., 4:2 (2017), 229–246 | DOI | MR | Zbl

[2] Birkenhake C., Lange H., Complex tori, Prog. Math., 177, Birkhhäuser, Boston, 1999 | MR | Zbl

[3] Birkenhake Ch., Lange H., Complex abelian varieties, Grundl. Math. Wiss., 302, 2nd ed., Springer, Berlin, 2004 | MR | Zbl

[4] Bourbaki N., Algebra I, Chapters 1–3, Elements of Mathematics, Springer, Berlin, 1989 | MR | Zbl

[5] Kempf G.R., Complex abelian varieties and theta functions, Berlin, Springer, 1991 | MR | Zbl

[6] Meng Sh., Zhang D.-Q., “Jordan property for non-linear algebraic groups and projective varieties”, Amer. J. Math., 140:4 (2018), 1133–1145 | DOI | MR | Zbl

[7] Mumford D., Abelian varieties, 2nd ed., Oxford Univ. Press, London, 1974 | MR | Zbl

[8] Popov V.L., “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry: The Russell Festschrift, CRM Proc. Lect. Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311 | DOI | MR | Zbl

[9] Popov V.L., “The Jordan property for Lie groups and automorphism groups of complex spaces”, Math. Notes, 103:5 (2018), 811–819 | DOI | MR | Zbl

[10] Prokhorov Yu., Shramov C., Automorphism groups of compact complex surfaces, E-print, 2017, arXiv: 1708.03566 [math.AG]

[11] Prokhorov Yu., Shramov C., Automorphism groups of Inoue and Kodaira surfaces, E-print, 2018, arXiv: 1812.02400 [math.AG]

[12] Wells R.O., \textup {Jr.}, Differential analysis on complex manifolds, Grundl. Math. Wiss., 65, 3rd ed., Springer, New York, 2008 | MR | Zbl

[13] Yu. G. Zarhin, “Local heights and Néron pairings”, Proc. Steklov Inst. Math., 208 (1995), 100–114 | MR | Zbl

[14] Zarhin Yu.G., “Theta groups and products of abelian and rational varieties”, Proc. Edinb. Math. Soc. Ser. 2, 57:1 (2014), 299–304 | DOI | MR | Zbl

[15] Zarhin Yu.G., “Jordan groups and elliptic ruled surfaces”, Transform. Groups, 20:2 (2015), 557–572 | DOI | MR | Zbl