Analysis in Noncommutative Algebras and Modules
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 100-111

Voir la notice de l'article provenant de la source Math-Net.Ru

In a previous paper, we developed an analysis in associative commutative algebras and in modules over them, which may be useful in problems of contemporary mathematical and theoretical physics. Here we work out similar methods in the noncommutative case.
Keywords: associative noncommutative algebra, derivation, covariant derivation, gauge transform, differential form, cohomology.
Mots-clés : module, multiplier, moduli space
@article{TRSPY_2019_306_a8,
     author = {V. V. Zharinov},
     title = {Analysis in {Noncommutative} {Algebras} and {Modules}},
     journal = {Informatics and Automation},
     pages = {100--111},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a8/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Analysis in Noncommutative Algebras and Modules
JO  - Informatics and Automation
PY  - 2019
SP  - 100
EP  - 111
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a8/
LA  - ru
ID  - TRSPY_2019_306_a8
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Analysis in Noncommutative Algebras and Modules
%J Informatics and Automation
%D 2019
%P 100-111
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a8/
%G ru
%F TRSPY_2019_306_a8
V. V. Zharinov. Analysis in Noncommutative Algebras and Modules. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 100-111. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a8/