Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 83-99

Voir la notice de l'article provenant de la source Math-Net.Ru

We express the asymptotic eigenfunctions of the operator $-\frac{d}{dx}D(x)\frac{d}{dx}$ that degenerates at the endpoints of an interval in terms of the modified Maslov canonical operator introduced in our previous studies.
@article{TRSPY_2019_306_a7,
     author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii},
     title = {Nonstandard {Lagrangian} {Singularities} and {Asymptotic} {Eigenfunctions} of the {Degenerating} {Operator} $-\frac{d}{dx}D(x)\frac{d}{dx}$},
     journal = {Informatics and Automation},
     pages = {83--99},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a7/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
TI  - Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$
JO  - Informatics and Automation
PY  - 2019
SP  - 83
EP  - 99
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a7/
LA  - ru
ID  - TRSPY_2019_306_a7
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%T Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$
%J Informatics and Automation
%D 2019
%P 83-99
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a7/
%G ru
%F TRSPY_2019_306_a7
S. Yu. Dobrokhotov; V. E. Nazaikinskii. Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 83-99. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a7/