On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 56-74

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of solutions of a second-order elliptic equation near a distinguished piece of the boundary is studied. On the remaining part of the boundary, the solutions are assumed to satisfy the homogeneous Dirichlet conditions. A necessary and sufficient condition is established for the existence of an $L_2$ boundary value on the distinguished part of the boundary. Under the conditions of this criterion, estimates for the nontangential maximal function of the solution hold, the solution belongs to the space of $(n-1)$-dimensionally continuous functions, and the boundary value is taken in a much stronger sense.
Mots-clés : elliptic equation
Keywords: boundary value, Dirichlet problem.
@article{TRSPY_2019_306_a5,
     author = {A. K. Gushchin},
     title = {On the {Existence} of $L_2$ {Boundary} {Values} of {Solutions} to an {Elliptic} {Equation}},
     journal = {Informatics and Automation},
     pages = {56--74},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a5/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation
JO  - Informatics and Automation
PY  - 2019
SP  - 56
EP  - 74
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a5/
LA  - ru
ID  - TRSPY_2019_306_a5
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation
%J Informatics and Automation
%D 2019
%P 56-74
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a5/
%G ru
%F TRSPY_2019_306_a5
A. K. Gushchin. On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 56-74. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a5/