On Maxwell's Equations with a Magnetic Monopole on Manifolds
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 52-55
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a generalization of Maxwell's equations on a pseudo-Riemannian manifold $M$ of arbitrary dimension in the presence of electric and magnetic charges and prove that if the cohomology groups $H^2(M)$ and $H^3(M)$ are trivial, then solving these equations reduces to solving the d'Alembert–Hodge equation.
@article{TRSPY_2019_306_a4,
author = {I. V. Volovich and V. V. Kozlov},
title = {On {Maxwell's} {Equations} with a {Magnetic} {Monopole} on {Manifolds}},
journal = {Informatics and Automation},
pages = {52--55},
year = {2019},
volume = {306},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a4/}
}
I. V. Volovich; V. V. Kozlov. On Maxwell's Equations with a Magnetic Monopole on Manifolds. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 52-55. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a4/
[1] Darboux G., “Problème de mécaniqie”, Bull. sci. math. astron. Sér. 2, 2:1 (1878), 433–436
[2] Poincaré H., “Remarques sur une expérience de M. Birkeland”, C. r. Acad. sci., 123 (1896), 530–533
[3] Dirac P.A.M., “Quantised singularities in the electromagnetic field”, Proc. R. Soc. London A, 133 (1931), 60–72 | DOI
[4] McDonald K.T., Birkeland, Darboux and Poincaré: Motion of an electric charge in the field of a magnetic pole, E-print, Princeton Univ., Princeton, NJ, 2015 http://www.physics.princeton.edu/~mcdonald/examples/birkeland.pdf