On Maxwell's Equations with a Magnetic Monopole on Manifolds
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 52-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a generalization of Maxwell's equations on a pseudo-Riemannian manifold $M$ of arbitrary dimension in the presence of electric and magnetic charges and prove that if the cohomology groups $H^2(M)$ and $H^3(M)$ are trivial, then solving these equations reduces to solving the d'Alembert–Hodge equation.
@article{TRSPY_2019_306_a4,
     author = {I. V. Volovich and V. V. Kozlov},
     title = {On {Maxwell's} {Equations} with a {Magnetic} {Monopole} on {Manifolds}},
     journal = {Informatics and Automation},
     pages = {52--55},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a4/}
}
TY  - JOUR
AU  - I. V. Volovich
AU  - V. V. Kozlov
TI  - On Maxwell's Equations with a Magnetic Monopole on Manifolds
JO  - Informatics and Automation
PY  - 2019
SP  - 52
EP  - 55
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a4/
LA  - ru
ID  - TRSPY_2019_306_a4
ER  - 
%0 Journal Article
%A I. V. Volovich
%A V. V. Kozlov
%T On Maxwell's Equations with a Magnetic Monopole on Manifolds
%J Informatics and Automation
%D 2019
%P 52-55
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a4/
%G ru
%F TRSPY_2019_306_a4
I. V. Volovich; V. V. Kozlov. On Maxwell's Equations with a Magnetic Monopole on Manifolds. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 52-55. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a4/