On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 287-303

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some classes of convolution-type nonlinear integral equations that are directly related to the problems of geographic spread of epidemic diseases. Under various constraints on the nonlinearity and the kernel of the equation, we prove existence theorems for monotonic and bounded solutions. We also present specific examples of application of these equations.
Keywords: epidemic, iterations, monotonicity, nonlinearity, bounded solution.
@article{TRSPY_2019_306_a21,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan},
     title = {On the {Solvability} of {Some} {Nonlinear} {Integral} {Equations} in {Problems} of {Epidemic} {Spread}},
     journal = {Informatics and Automation},
     pages = {287--303},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a21/}
}
TY  - JOUR
AU  - A. Kh. Khachatryan
AU  - Kh. A. Khachatryan
TI  - On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread
JO  - Informatics and Automation
PY  - 2019
SP  - 287
EP  - 303
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a21/
LA  - ru
ID  - TRSPY_2019_306_a21
ER  - 
%0 Journal Article
%A A. Kh. Khachatryan
%A Kh. A. Khachatryan
%T On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread
%J Informatics and Automation
%D 2019
%P 287-303
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a21/
%G ru
%F TRSPY_2019_306_a21
A. Kh. Khachatryan; Kh. A. Khachatryan. On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 287-303. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a21/