Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 235-257

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the generalized Gelfand–Shilov spaces $S_{b_n}^{a_k}$ are studied from the viewpoint of deformation quantization. We specify the conditions on the defining sequences $(a_k)$ and $(b_n)$ under which $S_{b_n}^{a_k}$ is an algebra with respect to the twisted convolution and, as a consequence, its Fourier transformed space $S^{b_n}_{a_k}$ is an algebra with respect to the Moyal star product. We also consider a general family of translation-invariant star products. We define and characterize the corresponding algebras of multipliers and prove the basic inclusion relations between these algebras and the duals of the spaces of ordinary pointwise and convolution multipliers. Analogous relations are proved for the projective counterpart of the Gelfand–Shilov spaces. A key role in our analysis is played by a theorem characterizing those spaces of type $S$ for which the function $\exp (iQ(x))$ is a pointwise multiplier for any real quadratic form $Q$.
@article{TRSPY_2019_306_a18,
     author = {M. A. Soloviev},
     title = {Spaces of {Type} $S$ as {Topological} {Algebras} under {Twisted} {Convolution} and {Star} {Product}},
     journal = {Informatics and Automation},
     pages = {235--257},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a18/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product
JO  - Informatics and Automation
PY  - 2019
SP  - 235
EP  - 257
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a18/
LA  - ru
ID  - TRSPY_2019_306_a18
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product
%J Informatics and Automation
%D 2019
%P 235-257
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a18/
%G ru
%F TRSPY_2019_306_a18
M. A. Soloviev. Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 235-257. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a18/