Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_306_a18, author = {M. A. Soloviev}, title = {Spaces of {Type} $S$ as {Topological} {Algebras} under {Twisted} {Convolution} and {Star} {Product}}, journal = {Informatics and Automation}, pages = {235--257}, publisher = {mathdoc}, volume = {306}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a18/} }
M. A. Soloviev. Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 235-257. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a18/
[1] Álvarez-Gaumé L., Vázquez-Mozo M.A., “General properties of non-commutative field theories”, Nucl. Phys. B, 668:1–2 (2003), 293–321 | DOI | MR | Zbl
[2] Antonets M.A., “The classical limit for Weyl quantization”, Lett. Math. Phys., 2:3 (1978), 241–245 | DOI | MR
[3] Athanassoulis A.G., Mauser N.J., Paul T., “Coarse-scale representations and smoothed Wigner transforms”, J. math. pures appl., 91:3 (2009), 296–338 | DOI | MR | Zbl
[4] Beiser S., Römer H., Waldmann S., “Convergence of the Wick star product”, Commun. Math. Phys., 272:1 (2007), 25–52 | DOI | MR | Zbl
[5] F. A. Berezin and M. A. Shubin, The Schrödinger Equation, Mosk. Gos. Univ., Moscow, 1983 | MR | Zbl | Zbl
[6] Kluwer, Dordrecht, 1991 | MR | Zbl | Zbl
[7] Blaszak M., Domański Z., “Phase space quantum mechanics”, Ann. Phys., 327:2 (2012), 167–211 | DOI | MR | Zbl
[8] Brüning E., Nagamachi S., “Relativistic quantum field theory with a fundamental length”, J. Math. Phys., 45:6 (2004), 2199–2231 | DOI | MR | Zbl
[9] Cappiello M., Toft J., “Pseudo-differential operators in a Gelfand–Shilov setting”, Math. Nachr., 290:5–6 (2017), 738–755 | DOI | MR | Zbl
[10] Chaichian M., Mnatsakanova M.N., Tureanu A., Vernov Yu., “Test functions space in noncommutative quantum field theory”, J. High Energy Phys., 2008:09 (2008), 125 | DOI | MR | Zbl
[11] Doplicher S., Fredenhagen K., Roberts J.E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Commun. Math. Phys., 172:1 (1995), 187–220 | DOI | MR | Zbl
[12] Fainberg V.Ya., Soloviev M.A., “Causality, localizability, and holomorphically convex hulls”, Commun. Math. Phys., 57:2 (1977), 149–159 | DOI | MR | Zbl
[13] Folland G.B., Harmonic analysis in phase space, Ann. Math. Stud., 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl
[14] Gayral V., Gracia-Bondía J.M., Iochum B., Schücker T., Várilly J.C., “Moyal planes are spectral triples”, Commun. Math. Phys., 246:3 (2004), 569–623 | DOI | MR | Zbl
[15] I. M. Gelfand and G. E. Shilov, Spaces of Fundamental and Generalized Functions, Fizmatgiz, Moscow, 1958 | MR
[16] Generalized Functions, 2, Academic, New York, 1968 | MR
[17] De Gosson M., Symplectic geometry and quantum mechanics, Birkhäuser, Basel, 2006 | MR | Zbl
[18] Gracia-Bondía J.M., Várilly J.C., “Algebras of distributions suitable for phase-space quantum mechanics. I”, J. Math. Phys., 29:4 (1988), 869–879 | DOI | MR | Zbl
[19] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Mem. AMS, 16, Amer. Math. Soc., Providence, RI, 1955 | MR
[20] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Springer, Berlin, 1983 | MR
[21] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. III, Pseudo-differential Operators, Springer, Berlin, 1985 | MR
[22] Komatsu H., “Projective and injective limits of weakly compact sequences of locally convex spaces”, J. Math Soc. Japan, 19:3 (1967), 366–383 | DOI | MR | Zbl
[23] Komatsu H., “Ultradistributions. I: Structure theorems and a characterization”, J. Fac. Sci. Univ. Tokyo. Sect. IA, 20:1 (1973), 25–105 | MR | Zbl
[24] Köthe G., Topological vector spaces. II, Springer, New York, 1979 | MR | Zbl
[25] Maillard J.M., “On the twisted convolution product and the Weyl transformation of tempered distributions”, J. Geom. Phys., 3:2 (1986), 231–261 | DOI | MR | Zbl
[26] Mandelbrojt S., “Sur un problème de Gelfand et Šilov”, Ann. sci. Éc. norm. supér. Sér. 3, 77:2 (1960), 145–166 | MR | Zbl
[27] Meise R., Vogt D., Introduction to functional analysis, Clarendon, Oxford, 1997 | MR | Zbl
[28] B. S. Mitjagin, “Nuclearity and other properties of spaces of type $S$”, Am. Math. Soc. Transl., Ser. 2,, 93 (1970), 45–59 | Zbl
[29] Moyal J.E., “Quantum mechanics as a statistical theory”, Proc. Camb. Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl
[30] G. J. Murphy, $C^*$-Algebras and Operator Theory, Academic, Boston, 1990 | MR
[31] Nagamachi S., Mugibayashi N., “Hyperfunction quantum field theory”, Commun. Math. Phys., 46:2 (1976), 119–134 | DOI | MR | Zbl
[32] Nagamachi S., Mugibayashi N., “Hyperfunction quantum field theory. II: Euclidean Green's functions”, Commun. Math. Phys., 49:3 (1976), 257–275 | DOI | MR | Zbl
[33] Von Neumann J., “Die Eindeutigkeit der Schrödingerschen Operatoren”, Math. Ann., 104 (1931), 570–578 | DOI | MR | Zbl
[34] V. P. Palamodov, “Fourier transforms of infinitely differentiable functions of rapid growth”, Tr. Mosk. Mat. Obshch., 11 (1962), 309–350 | MR | Zbl
[35] Pilipović S., Prangoski B., “Anti-Wick and Weyl quantization on ultradistribution spaces”, J. math. pures appl., 103:2 (2015), 472–503 | DOI | MR | Zbl
[36] Prangoski B., “Pseudodifferential operators of infinite order in spaces of tempered ultradistributions”, J. Pseudo-Diff. Oper. Appl., 4:4 (2013), 495–549 | DOI | MR | Zbl
[37] Quantum mechanics in phase space: An overview with selected papers, ed. by C.K. Zachos, D.B. Fairlie, T.L. Curtright, World Scientific, Hackensack, NJ, 2005 | MR | Zbl
[38] H. H. Schaefer, Topological Vector Spaces, MacMillan, New York, 1966 | MR | Zbl
[39] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:09 (1999), 032 | DOI | MR
[40] G. E. Shilov, “On a problem of quasianalyticity”, Dokl. Akad. Nauk SSSR, 102:5 (1955), 893–895 | MR | Zbl
[41] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer Ser. Sov. Math., Springer, Berlin, 1987 | DOI | MR | Zbl
[42] Smirnov A.G., “On topological tensor products of functional Fréchet and DF spaces”, Integral Transforms Spec. Funct., 20:3–4 (2009), 309–318 | DOI | MR | Zbl
[43] M. A. Solov'ev, “On the Fourier–Laplace transformation of generalized functions”, Theor. Math. Phys., 15:1 (1973), 317–328 | DOI | DOI | MR | Zbl
[44] M. A. Solov'ev, “Spacelike asymptotic behavior of vacuum expectation values in nonlocal field theory”, Theor. Math. Phys., 52:3 (1982), 854–862 | DOI | MR | MR
[45] Soloviev M.A., “An extension of distribution theory and of the Paley–Wiener–Schwartz theorem related to quantum gauge theory”, Commun. Math. Phys., 184:3 (1997), 579–596 | DOI | MR | Zbl
[46] M. A. Soloviev, “Axiomatic formulations of nonlocal and noncommutative field theories”, Theor. Math. Phys., 147:2 (2006), 660–669 | DOI | DOI | MR | Zbl
[47] M. A. Soloviev, “Star product algebras of test functions”, Theor. Math. Phys., 153:1 (2007), 1351–1363 | DOI | DOI | MR | Zbl
[48] Soloviev M.A., “Noncommutativity and $\theta $-locality”, J. Phys. A: Math. Theor., 40:48 (2007), 14593–14604 | DOI | MR | Zbl
[49] Soloviev M.A., “Quantum field theory with a fundamental length: A general mathematical framework”, J. Math. Phys., 50:12 (2009), 123519 | DOI | MR | Zbl
[50] Soloviev M.A., “Reconstruction in quantum field theory with a fundamental length”, J. Math. Phys., 51:9 (2010), 093520 | DOI | MR | Zbl
[51] Soloviev M.A., “Moyal multiplier algebras of the test function spaces of type $S$”, J. Math. Phys., 52:6 (2011), 063502 | DOI | MR | Zbl
[52] M. A. Soloviev, “Twisted convolution and Moyal star product of generalized functions”, Theor. Math. Phys., 172:1 (2012), 885–900 | DOI | DOI | MR | Zbl
[53] M. A. Soloviev, “Generalized Weyl correspondence and Moyal multiplier algebras”, Theor. Math. Phys., 173:1 (2012), 1359–1376 | DOI | DOI | MR | Zbl
[54] Soloviev M.A., “Algebras with convergent star products and their representations in Hilbert spaces”, J. Math. Phys., 54:7 (2013), 073517 | DOI | MR | Zbl
[55] M. A. Soloviev, “Star products on symplectic vector spaces: Convergence, representations, and extensions”, Theor. Math. Phys., 181:3 (2014), 1612–1637 | DOI | DOI | MR | Zbl
[56] Soloviev M.A., “Integral representations of the star product corresponding to the $s$-ordering of the creation and annihilation operators”, Phys. scr., 90:7 (2015), 074008 | DOI
[57] R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That, W. A. Benjamin, New York, 1964 | MR | Zbl
[58] Takahashi K., “Distribution functions in classical and quantum mechanics”, Prog. Theor. Phys. Suppl., 98 (1989), 109–156 | DOI | MR
[59] Toft J., “Images of function and distribution spaces under the Bargmann transform”, J. Pseudo-Diff. Oper. Appl., 8:1 (2017), 83–139 | DOI | MR | Zbl
[60] Várilly J.C., Gracia-Bondía J.M., “Algebras of distributions suitable for phase-space quantum mechanics. II: Topologies on the Moyal algebra”, J. Math. Phys., 29:4 (1988), 880–887 | DOI | MR | Zbl
[61] V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, Nauka, Moscow, 1964 | MR
[62] M.I.T. Press, Cambridge, MA, 1966 | MR
[63] V. S. Vladimirov, Generalized Functions in Mathematical Physics, Nauka, Moscow, 1976 | MR
[64] Mir, Moscow, 1979 | MR
[65] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publ., New York, 1931 | MR
[66] Wong M.W., Weyl transforms, Springer, New York, 1998 | MR | Zbl
[67] V. V. Zharinov, “Compact families of locally convex topological vector spaces, Fréchet–Schwartz and dual Fréchet–Schwartz spaces”, Russ. Math. Surv., 34:4 (1979), 105–143 | DOI | MR | Zbl | Zbl