Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 192-209

Voir la notice de l'article provenant de la source Math-Net.Ru

The first initial–boundary value problem is considered for a class of anisotropic parabolic equations with variable nonlinearity exponents and a diffuse measure on the right-hand side in a cylindrical domain $(0,T)\times \Omega $. The domain $\Omega $ is bounded. The existence of a renormalized solution is proved.
Mots-clés : anisotropic parabolic equation, existence of a solution.
Keywords: diffuse measure, renormalized solution, variable nonlinearity exponents
@article{TRSPY_2019_306_a15,
     author = {F. Kh. Mukminov},
     title = {Existence of a {Renormalized} {Solution} to an {Anisotropic} {Parabolic} {Problem} for an {Equation} with {Diffuse} {Measure}},
     journal = {Informatics and Automation},
     pages = {192--209},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a15/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure
JO  - Informatics and Automation
PY  - 2019
SP  - 192
EP  - 209
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a15/
LA  - ru
ID  - TRSPY_2019_306_a15
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure
%J Informatics and Automation
%D 2019
%P 192-209
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a15/
%G ru
%F TRSPY_2019_306_a15
F. Kh. Mukminov. Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 192-209. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a15/