Gauge Parameterization of the $n$-Field
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 139-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a gauge parameterization of the three-dimensional $n$-field using an orthogonal $\mathbb {SO}(3)$-matrix, which, in turn, is defined by a field taking values in the Lie algebra $\mathfrak {so}(3)$ (rotation-angle field). The rotation-angle field has an additional degree of freedom, which corresponds to the gauge degree of freedom of rotations around the $n$-field. As a result, we obtain a gauge model with local $\mathbb {SO}(2)\simeq \mathbb U(1)$ symmetry that does not contain a $\mathbb U(1)$ gauge field.
@article{TRSPY_2019_306_a11,
     author = {M. O. Katanaev},
     title = {Gauge {Parameterization} of the $n${-Field}},
     journal = {Informatics and Automation},
     pages = {139--147},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a11/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Gauge Parameterization of the $n$-Field
JO  - Informatics and Automation
PY  - 2019
SP  - 139
EP  - 147
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a11/
LA  - ru
ID  - TRSPY_2019_306_a11
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Gauge Parameterization of the $n$-Field
%J Informatics and Automation
%D 2019
%P 139-147
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a11/
%G ru
%F TRSPY_2019_306_a11
M. O. Katanaev. Gauge Parameterization of the $n$-Field. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 139-147. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a11/

[1] M. O. Katanaev, “Geometric theory of defects”, Phys. Usp., 48:7 (2005), 675–701 | DOI | DOI

[2] M. O. Katanaev, Geometric methods in mathematical physics, E-print, 2016, arXiv: 1311.0733v3 [math-ph]

[3] Katanaev M.O., “Chern–Simons term in the geometric theory of defects”, Phys. Rev. D, 96:8 (2017), 084054 ; arXiv: 1705.07888 [math-ph] | DOI | MR

[4] Katanaev M.O., Volovich I.V., “Theory of defects in solids and three-dimensional gravity”, Ann. Phys., 216:1 (1992), 1–28 | DOI | MR | Zbl

[5] Katanaev M.O., Volovich I.V., “Scattering on dislocations and cosmic strings in the geometric theory of defects”, Ann. Phys., 271:2 (1999), 203–232 | DOI | MR | Zbl

[6] A. A. Slavnov and L. D. Faddeev, Introduction to the Quantum Theory of Gauge Fields, Nauka, Moscow, 1988 | MR | MR | Zbl

[7] L. D. Faddeev and A. A. Slavnov, Gauge Fields: An Introduction to Quantum Theory, CRC Press, Boca Raton, FL, 2018 | MR | MR | Zbl