Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_306_a11, author = {M. O. Katanaev}, title = {Gauge {Parameterization} of the $n${-Field}}, journal = {Informatics and Automation}, pages = {139--147}, publisher = {mathdoc}, volume = {306}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a11/} }
M. O. Katanaev. Gauge Parameterization of the $n$-Field. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 139-147. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a11/
[1] M. O. Katanaev, “Geometric theory of defects”, Phys. Usp., 48:7 (2005), 675–701 | DOI | DOI
[2] M. O. Katanaev, Geometric methods in mathematical physics, E-print, 2016, arXiv: 1311.0733v3 [math-ph]
[3] Katanaev M.O., “Chern–Simons term in the geometric theory of defects”, Phys. Rev. D, 96:8 (2017), 084054 ; arXiv: 1705.07888 [math-ph] | DOI | MR
[4] Katanaev M.O., Volovich I.V., “Theory of defects in solids and three-dimensional gravity”, Ann. Phys., 216:1 (1992), 1–28 | DOI | MR | Zbl
[5] Katanaev M.O., Volovich I.V., “Scattering on dislocations and cosmic strings in the geometric theory of defects”, Ann. Phys., 271:2 (1999), 203–232 | DOI | MR | Zbl
[6] A. A. Slavnov and L. D. Faddeev, Introduction to the Quantum Theory of Gauge Fields, Nauka, Moscow, 1988 | MR | MR | Zbl
[7] L. D. Faddeev and A. A. Slavnov, Gauge Fields: An Introduction to Quantum Theory, CRC Press, Boca Raton, FL, 2018 | MR | MR | Zbl