$p$-Adic Gaussian Random Variables
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 131-138

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to characterization theorems for idempotent distributions on the $p$-adic number field $\mathbb Q_p$ in terms of functional relations for the characteristic functions of these distributions.
@article{TRSPY_2019_306_a10,
     author = {E. I. Zelenov},
     title = {$p${-Adic} {Gaussian} {Random} {Variables}},
     journal = {Informatics and Automation},
     pages = {131--138},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a10/}
}
TY  - JOUR
AU  - E. I. Zelenov
TI  - $p$-Adic Gaussian Random Variables
JO  - Informatics and Automation
PY  - 2019
SP  - 131
EP  - 138
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a10/
LA  - ru
ID  - TRSPY_2019_306_a10
ER  - 
%0 Journal Article
%A E. I. Zelenov
%T $p$-Adic Gaussian Random Variables
%J Informatics and Automation
%D 2019
%P 131-138
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a10/
%G ru
%F TRSPY_2019_306_a10
E. I. Zelenov. $p$-Adic Gaussian Random Variables. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 131-138. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a10/