$p$-Adic Gaussian Random Variables
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 131-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to characterization theorems for idempotent distributions on the $p$-adic number field $\mathbb Q_p$ in terms of functional relations for the characteristic functions of these distributions.
@article{TRSPY_2019_306_a10,
     author = {E. I. Zelenov},
     title = {$p${-Adic} {Gaussian} {Random} {Variables}},
     journal = {Informatics and Automation},
     pages = {131--138},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a10/}
}
TY  - JOUR
AU  - E. I. Zelenov
TI  - $p$-Adic Gaussian Random Variables
JO  - Informatics and Automation
PY  - 2019
SP  - 131
EP  - 138
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a10/
LA  - ru
ID  - TRSPY_2019_306_a10
ER  - 
%0 Journal Article
%A E. I. Zelenov
%T $p$-Adic Gaussian Random Variables
%J Informatics and Automation
%D 2019
%P 131-138
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a10/
%G ru
%F TRSPY_2019_306_a10
E. I. Zelenov. $p$-Adic Gaussian Random Variables. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 131-138. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a10/

[1] Bryc W., The normal distribution: Characterizations with applications, Lect. Notes Stat., 100, Springer, New York, 1995 | DOI | MR | Zbl

[2] Evans S.N., “Local fields, Gaussian measures, and Brownian motions”, Topics in probability and Lie groups: Boundary theory, CRM Proc. Lect. Notes, 28, ed. by J.C. Taylor, Amer. Math. Soc., Providence, RI, 2001, 11–50 | DOI | MR | Zbl

[3] G. M. Fel'dman, “Gaussian distributions on locally compact Abelian groups”, Funct. Anal. Appl., 11:1 (1977), 76–78 | DOI | MR | Zbl | Zbl

[4] G. M. Fel'dman, “On the decomposition of Gaussian distributions on groups”, Theory Probab. Appl., 22:1 (1977), 133–140 | DOI | MR | Zbl

[5] G. M. Fel'dman, “Bernstein Gaussian distributions on groups”, Theory Probab. Appl., 31:1 (1987), 40–49 | DOI | MR | Zbl | Zbl

[6] Fel'dman G.M., Arithmetic of probability distributions, and characterization problems on abelian groups, Transl. Math. Monogr., 116, Amer. Math. Soc., Providence, RI, 1993 | DOI | MR | Zbl | Zbl

[7] G. M. Fel'dman, Arithmetic of Probability Distributions, and Characterization Problems on Abelian Groups, Naukova Dumka, Kiev, 1990 | DOI | MR | Zbl | Zbl

[8] Arithmetic of Probability Distributions, and Characterization Problems on Abelian Groups, Transl. Math. Monogr., 116, Am. Math. Soc., Providence, RI, 1993 ; Kheier X., Veroyatnostnye mery na lokalno kompaktnykh gruppakh, Mir, M., 1981 | DOI | MR | Zbl | Zbl

[9] H. Heyer, Probability Measures on Locally Compact Groups, Ergebn. Math. Grenzgeb., 94, Springer, Berlin, 1977 ; Partasarati K.R., Ranga Rao R., Varadkhan S.R.S., “Raspredeleniya veroyatnostei na lokalno kompaktnykh abelevykh gruppakh”, Matematika, 9:2 (1965), 115–146 | MR | Zbl

[10] K. R. Parthasarathy, R. Ranga Rao, and S. R. S. Varadhan, “Probability distributions on locally compact abelian groups”, Ill. J. Math., 7 (1963), 337–369 | DOI | MR | Zbl

[11] A. L. Rukhin, “On a theorem of S. N. Bernshtein”, Math. Notes, 6:3 (1969), 638–641 | DOI | MR | Zbl

[12] Schikhof W.H., Ultrametric calculus: An introduction to $p$-adic analysis, Cambridge Stud. Adv. Math., 4, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl