Global Structure of Spherically Symmetric Solutions of Einstein's Equations with an Electromagnetic Field
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 16-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify all global spherically symmetric solutions of Einstein's equations with an electromagnetic field and a cosmological constant. The classification comprises 11 topologically inequivalent solutions. The spacetime is assumed to be a warped product of two surfaces. The study of global properties of solutions is carried out by the method of conformal blocks, which consists in analyzing the zeros and poles of a conformal factor contained in the spacetime metric.
@article{TRSPY_2019_306_a1,
     author = {D. E. Afanasev},
     title = {Global {Structure} of {Spherically} {Symmetric} {Solutions} of {Einstein's} {Equations} with an {Electromagnetic} {Field}},
     journal = {Informatics and Automation},
     pages = {16--27},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a1/}
}
TY  - JOUR
AU  - D. E. Afanasev
TI  - Global Structure of Spherically Symmetric Solutions of Einstein's Equations with an Electromagnetic Field
JO  - Informatics and Automation
PY  - 2019
SP  - 16
EP  - 27
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a1/
LA  - ru
ID  - TRSPY_2019_306_a1
ER  - 
%0 Journal Article
%A D. E. Afanasev
%T Global Structure of Spherically Symmetric Solutions of Einstein's Equations with an Electromagnetic Field
%J Informatics and Automation
%D 2019
%P 16-27
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a1/
%G ru
%F TRSPY_2019_306_a1
D. E. Afanasev. Global Structure of Spherically Symmetric Solutions of Einstein's Equations with an Electromagnetic Field. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 16-27. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a1/

[1] M. O. Katanaev, Geometrical methods in mathematical physics, E-print, 2016, arXiv: 1311.0733v3 [math-ph]

[2] M. O. Katanaev, “Global solutions in gravity. Lorentzian signature”, Proc. Steklov Inst. Math., 228 (2000), 158–183 | MR | Zbl

[3] Katanaev M.O., Klösch T., Kummer W., “Global properties of warped solutions in general relativity”, Ann. Phys., 276:2 (1999), 191–222 ; Kramer D., Shtefani Kh., Kherlt E., Mak-Kallum M., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | DOI | MR | Zbl

[4] D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of Einstein's Field Equations, Dtsch. Verlag Wiss., Berlin, 1980 | MR

[5] Nordström G., “On the energy of the gravitation field in Einstein's theory”, Proc. K. Ned. Akad. Wet., 20 (1918), 1238–1245

[6] Reissner H., “Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie”, Ann. Phys., 355:9 (1916), 106–120 | DOI