Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_306_a1, author = {D. E. Afanasev}, title = {Global {Structure} of {Spherically} {Symmetric} {Solutions} of {Einstein's} {Equations} with an {Electromagnetic} {Field}}, journal = {Informatics and Automation}, pages = {16--27}, publisher = {mathdoc}, volume = {306}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a1/} }
TY - JOUR AU - D. E. Afanasev TI - Global Structure of Spherically Symmetric Solutions of Einstein's Equations with an Electromagnetic Field JO - Informatics and Automation PY - 2019 SP - 16 EP - 27 VL - 306 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a1/ LA - ru ID - TRSPY_2019_306_a1 ER -
D. E. Afanasev. Global Structure of Spherically Symmetric Solutions of Einstein's Equations with an Electromagnetic Field. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 16-27. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a1/
[1] M. O. Katanaev, Geometrical methods in mathematical physics, E-print, 2016, arXiv: 1311.0733v3 [math-ph]
[2] M. O. Katanaev, “Global solutions in gravity. Lorentzian signature”, Proc. Steklov Inst. Math., 228 (2000), 158–183 | MR | Zbl
[3] Katanaev M.O., Klösch T., Kummer W., “Global properties of warped solutions in general relativity”, Ann. Phys., 276:2 (1999), 191–222 ; Kramer D., Shtefani Kh., Kherlt E., Mak-Kallum M., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | DOI | MR | Zbl
[4] D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of Einstein's Field Equations, Dtsch. Verlag Wiss., Berlin, 1980 | MR
[5] Nordström G., “On the energy of the gravitation field in Einstein's theory”, Proc. K. Ned. Akad. Wet., 20 (1918), 1238–1245
[6] Reissner H., “Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie”, Ann. Phys., 355:9 (1916), 106–120 | DOI