Quasi-averages in Random Matrix Models
Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 7-15

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the Bogoliubov quasi-average approach to studying phase transitions in random matrix models related to a zero-dimensional version of the fermionic SYK model with replicas. We show that in the model with quartic interaction deformed by a quadratic term, there exist either two or four different phases with nonvanishing replica off-diagonal correlation functions.
@article{TRSPY_2019_306_a0,
     author = {I. Ya. Aref'eva and I. V. Volovich},
     title = {Quasi-averages in {Random} {Matrix} {Models}},
     journal = {Informatics and Automation},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a0/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - I. V. Volovich
TI  - Quasi-averages in Random Matrix Models
JO  - Informatics and Automation
PY  - 2019
SP  - 7
EP  - 15
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a0/
LA  - ru
ID  - TRSPY_2019_306_a0
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A I. V. Volovich
%T Quasi-averages in Random Matrix Models
%J Informatics and Automation
%D 2019
%P 7-15
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a0/
%G ru
%F TRSPY_2019_306_a0
I. Ya. Aref'eva; I. V. Volovich. Quasi-averages in Random Matrix Models. Informatics and Automation, Mathematical physics and applications, Tome 306 (2019), pp. 7-15. http://geodesic.mathdoc.fr/item/TRSPY_2019_306_a0/