An Elementary Approach to the Study of Somos Sequences
Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 330-343.

Voir la notice de l'article provenant de la source Math-Net.Ru

An elementary approach (not involving the theory of elliptic functions) is proposed to the proof of the main properties of the Somos-4 sequence.
Keywords: Somos-4 sequence, addition theorems, elliptic curves.
@article{TRSPY_2019_305_a17,
     author = {A. V. Ustinov},
     title = {An {Elementary} {Approach} to the {Study} of {Somos} {Sequences}},
     journal = {Informatics and Automation},
     pages = {330--343},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a17/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - An Elementary Approach to the Study of Somos Sequences
JO  - Informatics and Automation
PY  - 2019
SP  - 330
EP  - 343
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a17/
LA  - ru
ID  - TRSPY_2019_305_a17
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T An Elementary Approach to the Study of Somos Sequences
%J Informatics and Automation
%D 2019
%P 330-343
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a17/
%G ru
%F TRSPY_2019_305_a17
A. V. Ustinov. An Elementary Approach to the Study of Somos Sequences. Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 330-343. http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a17/

[1] Alman J., Cuenca C., Huang J., “Laurent phenomenon sequences”, J. Algebr. Comb., 43:3 (2016), 589–633 | DOI | Zbl

[2] M. O. Avdeeva and V. A. Bykovskii, “Hyperelliptic systems of sequences and functions”, Dal'nevost. Mat. Zh., 16:2 (2016), 115–122 | Zbl

[3] V. A. Bykovskii, “Hyperquasipolynomials and their applications”, Funct. Anal. Appl., 50:3 (2016), 193–203 | DOI | DOI | Zbl

[4] V. A. Bykovskii and A. V. Ustinov, “Somos-4 and elliptic systems of sequences”, Dokl. Math., 94:3 (2016), 611–614 | DOI | Zbl

[5] Fedorov Yu.N., Hone A.N.W., “Sigma-function solution to the general Somos-6 recurrence via hyperelliptic Prym varieties”, J. Integrable Syst., 1:1 (2016), xyw012 | DOI | Zbl

[6] Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. Appl. Math., 28:2 (2002), 119–144 | DOI | Zbl

[7] Gale D., Tracking the automatic ant and other mathematical explorations: A collection of mathematical entertainments columns from the Mathematical Intelligencer, Springer, New York, 1998 | Zbl

[8] Hone A.N.W., “Elliptic curves and quadratic recurrence sequences”, Bull. London Math. Soc., 37:2 (2005), 161–171 | DOI | Zbl

[9] Hone A.N.W., “Sigma function solution of the initial value problem for Somos 5 sequences”, Trans. Amer. Math. Soc., 359:10 (2007), 5019–5034 | DOI | Zbl

[10] Hone A.N.W., “Analytic solutions and integrability for bilinear recurrences of order six”, Appl. Anal., 89:4 (2010), 473–492 | DOI | Zbl

[11] Hone A.N.W., Swart C., “Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences”, Math. Proc. Cambridge Philos. Soc., 145:1 (2008), 65–85 | DOI | Zbl

[12] A. A. Illarionov, “Functional equations and Weierstrass sigma-functions”, Funct. Anal. Appl., 50:4 (2016), 281–290 | DOI | DOI | Zbl

[13] A. A. Illarionov, “Solution of functional equations related to elliptic functions”, Proc. Steklov Inst. Math., 299, 2017, 96–108 | DOI | DOI | Zbl

[14] A. A. Illarionov and M. A. Romanov, “On the connection between hyperelliptic systems of sequences and functions”, Dal'nevost. Mat. Zh., 17:2 (2017), 210–220 | Zbl

[15] Ma X., “Magic determinants of Somos sequences and theta functions”, Discrete Math., 310:1 (2010), 1–5 | DOI

[16] Van der Poorten A.J., Swart C.S., “Recurrence relations for elliptic sequences: every Somos 4 is a Somos $k$”, Bull. London Math. Soc., 38:4 (2006), 546–554 | DOI | Zbl

[17] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover, New York, 1990 | Zbl

[18] Rochberg R., Rubel L.A., “A functional equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | Zbl

[19] Somos M., Step into the Elliptic Realm, Preprint, 2000 https://www.cut-the-knot.org/arithmetic/algebra/EllipticSeq.shtml

[20] Swart C.S., Elliptic curves and related sequences, PhD Thesis, R. Holloway and Bedford New Coll., Univ. London, Egham, 2003

[21] F. G. Tricomi, Integral Equations, Interscience, New York, 1957 | Zbl

[22] Ward M., “Memoir on elliptic divisibility sequences”, Amer. J. Math., 70:1 (1948), 31–74 | DOI | Zbl

[23] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Univ. Press, Cambridge, 1927 | Zbl