The Smooth Torus Orbit Closures in the Grassmannians
Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 271-282

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that for the natural algebraic torus actions on the Grassmannians, the closures of torus orbits are normal and hence are toric varieties, and that these toric varieties are smooth if and only if the corresponding matroid polytopes are simple. We prove that simple matroid polytopes are products of simplices and that smooth torus orbit closures in the Grassmannians are products of complex projective spaces. Moreover, it turns out that the smooth torus orbit closures are uniquely determined by the corresponding simple matroid polytopes.
Keywords: Toric variety, Grassmannian, torus orbit closure, matroid polytope
Mots-clés : bipartite graph.
@article{TRSPY_2019_305_a13,
     author = {Masashi Noji and Kazuaki Ogiwara},
     title = {The {Smooth} {Torus} {Orbit} {Closures} in the {Grassmannians}},
     journal = {Informatics and Automation},
     pages = {271--282},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a13/}
}
TY  - JOUR
AU  - Masashi Noji
AU  - Kazuaki Ogiwara
TI  - The Smooth Torus Orbit Closures in the Grassmannians
JO  - Informatics and Automation
PY  - 2019
SP  - 271
EP  - 282
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a13/
LA  - ru
ID  - TRSPY_2019_305_a13
ER  - 
%0 Journal Article
%A Masashi Noji
%A Kazuaki Ogiwara
%T The Smooth Torus Orbit Closures in the Grassmannians
%J Informatics and Automation
%D 2019
%P 271-282
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a13/
%G ru
%F TRSPY_2019_305_a13
Masashi Noji; Kazuaki Ogiwara. The Smooth Torus Orbit Closures in the Grassmannians. Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 271-282. http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a13/