Mots-clés : bipartite graph.
@article{TRSPY_2019_305_a13,
author = {Masashi Noji and Kazuaki Ogiwara},
title = {The {Smooth} {Torus} {Orbit} {Closures} in the {Grassmannians}},
journal = {Informatics and Automation},
pages = {271--282},
year = {2019},
volume = {305},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a13/}
}
Masashi Noji; Kazuaki Ogiwara. The Smooth Torus Orbit Closures in the Grassmannians. Informatics and Automation, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 271-282. http://geodesic.mathdoc.fr/item/TRSPY_2019_305_a13/
[1] Aomoto K., “Les équations aux différences linéaires et les intégrales des fonctions multiformes”, J. Fac. Sci., Univ. Tokyo, Sect. IA: Math., 22 (1975), 271–297 | Zbl
[2] Buchstaber V.M., Terzić S., “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb C P^5$”, Moscow Math. J., 16:2 (2016), 237–273 | DOI | Zbl
[3] Buchstaber V.M., Terzić S., Toric topology of the complex Grassmann manifolds, E-print, 2018, arXiv: 1802.06449 [math.AT]
[4] I. M. Gel'fand, “General theory of hypergeometric functions”, Sov. Math., Dokl., 33 (1986), 573–577 | Zbl
[5] Gelfand I.M., Goresky R.M., MacPherson R.D., Serganova V.V., “Combinatorial geometries, convex polyhedra, and Schubert cells”, Adv. Math., 63 (1987), 301–316 | DOI | Zbl
[6] Gelfand I.M., MacPherson R.D., “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. Math., 44 (1982), 279–312 | DOI | Zbl
[7] I. M. Gel'fand and V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russ. Math. Surv., 42:2 (1987), 133–168 | DOI | Zbl | Zbl
[8] Lee E., Masuda M., Generic torus orbit closures in Schubert varieties, E-print, 2018, arXiv: 1807.02904 [math.CO]
[9] Yu L., Masuda M., On descriptions of products of simplices, E-print, 2016, arXiv: 1609.05761 [math.AT]