Regularized Extragradient Method of Finding a Solution to an Optimal Control Problem with Inaccurately Specified Input Data
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 137-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an optimal control problem described by a system of linear ordinary differential equations with boundary conditions of general form defined by inequality-type constraints in the case when the input data are inaccurately specified. In general, such problems are unstable with respect to perturbations of the input data and require the development of special stable solution methods. In this paper we propose a regularized variant of the extragradient method, study its convergence, and construct a regularizing operator.
Keywords: optimal control problem, Lagrange function, Tikhonov function, saddle point, extragradient method, regularization method, regularizing operator.
@article{TRSPY_2019_304_a7,
     author = {F. P. Vasil'ev and L. A. Artem'eva},
     title = {Regularized {Extragradient} {Method} of {Finding} a {Solution} to an {Optimal} {Control} {Problem} with {Inaccurately} {Specified} {Input} {Data}},
     journal = {Informatics and Automation},
     pages = {137--148},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a7/}
}
TY  - JOUR
AU  - F. P. Vasil'ev
AU  - L. A. Artem'eva
TI  - Regularized Extragradient Method of Finding a Solution to an Optimal Control Problem with Inaccurately Specified Input Data
JO  - Informatics and Automation
PY  - 2019
SP  - 137
EP  - 148
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a7/
LA  - ru
ID  - TRSPY_2019_304_a7
ER  - 
%0 Journal Article
%A F. P. Vasil'ev
%A L. A. Artem'eva
%T Regularized Extragradient Method of Finding a Solution to an Optimal Control Problem with Inaccurately Specified Input Data
%J Informatics and Automation
%D 2019
%P 137-148
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a7/
%G ru
%F TRSPY_2019_304_a7
F. P. Vasil'ev; L. A. Artem'eva. Regularized Extragradient Method of Finding a Solution to an Optimal Control Problem with Inaccurately Specified Input Data. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 137-148. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a7/

[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 ; L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Fizmatgiz,, Moscow, 1961 ; Pergamon, Oxford, 1964 ; 4th ed., Nauka, Moscow, 1983 | MR | Zbl | Zbl | Zbl

[2] F. P. Vasil'ev, Optimization Methods, Parts 1, 2, MTsNMO, Moscow, 2011 (in Russian)

[3] A. S. Antipin, L. A. Artem'eva, and F. P. Vasil'ev, “Extragradient method for solving an optimal control problem with implicitly specified boundary conditions”, Comput. Math. Math. Phys., 57:1 (2017), 64–70 | DOI | MR | Zbl

[4] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986; A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems, Nauka, Moscow, 1974 ; J. Wiley Sons, New York, 1977 ; 3rd ed., Nauka, Moscow, 1986 | MR | Zbl | Zbl

[5] A. Bakushinsky and A. Goncharsky, Iterative Methods for Solving Ill-Posed Problems, Nauka, Moscow, 1989 | MR

[6] Ill-Posed Problems: Theory and Applications, Math. Appl., 301, Kluwer, Dordrecht, 1994 | MR

[7] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976 | MR | MR | Zbl