Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_304_a6, author = {A. L. Bagno and A. M. Tarasyev}, title = {Estimate for the {Accuracy} of a {Backward} {Procedure} for the {Hamilton--Jacobi} {Equation} in an {Infinite-Horizon} {Optimal} {Control} {Problem}}, journal = {Informatics and Automation}, pages = {123--136}, publisher = {mathdoc}, volume = {304}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a6/} }
TY - JOUR AU - A. L. Bagno AU - A. M. Tarasyev TI - Estimate for the Accuracy of a Backward Procedure for the Hamilton--Jacobi Equation in an Infinite-Horizon Optimal Control Problem JO - Informatics and Automation PY - 2019 SP - 123 EP - 136 VL - 304 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a6/ LA - ru ID - TRSPY_2019_304_a6 ER -
%0 Journal Article %A A. L. Bagno %A A. M. Tarasyev %T Estimate for the Accuracy of a Backward Procedure for the Hamilton--Jacobi Equation in an Infinite-Horizon Optimal Control Problem %J Informatics and Automation %D 2019 %P 123-136 %V 304 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a6/ %G ru %F TRSPY_2019_304_a6
A. L. Bagno; A. M. Tarasyev. Estimate for the Accuracy of a Backward Procedure for the Hamilton--Jacobi Equation in an Infinite-Horizon Optimal Control Problem. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 123-136. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a6/
[1] R. A. Adiatulina and A. M. Taras'yev, “A differential game of unlimited duration”, J. Appl. Math. Mech., 51:4 (1987), 415–420 | DOI | MR | Zbl
[2] S. M. Aseev, K. O. Besov, and A. V. Kryazhimskiy, “Infinite-horizon optimal control problems in economics”, Russ. Math. Surv., 67:2 (2012), 195–253 | DOI | DOI | MR | Zbl
[3] S. M. Aseev and A. V. Kryazhimskii, “The Pontryagin maximum principle and optimal economic growth problems”, Proc. Steklov Inst. Math., 257, 2007, 1–255 | DOI | MR | Zbl
[4] A. L. Bagno and A. M. Taras'yev, “Properties of the value function in infinite horizon optimal control problems”, Vestn. Udmurt. Univ., Mat., Mekh., Komp'yut. Nauki, 26:1 (2016), 3–14 | MR | Zbl
[5] A. L. Bagno and A. M. Taras'yev, “Stability properties of the value function in an infinite-horizon optimal control problem”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 23:1 (2017), 43–56
[6] A. L. Bagno and A. M. Taras'yev, “Discrete approximation of the Hamilton–Jacobi equation for the value function in an infinite-horizon optimal control problem”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 24:1 (2018), 27–39 | MR
[7] Bellman R., Dynamic Programming, Princeton Univ. Press, Princeton, NJ, 1957 | MR | MR | Zbl
[8] Capuzzo Dolcetta I., “On a discrete approximation of the Hamilton–Jacobi equation of dynamic programming”, Appl. Math. Optim., 10 (1983), 367–377 | DOI | MR
[9] Capuzzo Dolcetta I., Ishii H., “Approximate solutions of the Bellman equation of deterministic control theory”, Appl. Math. Optim., 11 (1984), 161–181 | DOI | MR
[10] Crandall M.G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[11] A. A. Krasovskii and A. M. Taras'ev, “Dynamic optimization of investments in the economic growth models”, Autom. Remote Control, 68:10 (2007), 1765–1777 | DOI | MR | Zbl
[12] N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Nauka, Moscow, 1974 ; Game-Theoretical Control Problems, Springer, New York, 1988 | MR | MR | Zbl | Zbl
[13] M. S. Nikolskii, “On the local Lipschitz property of the Bellman function in an optimization problem”, Proc. Steklov Inst. Math., no. No. Suppl. 2, 2004, S115–S125 | MR | Zbl
[14] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl
[15] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics I, Proc. Int. Summer Sch. (Varenna, Italy, 1967), Lect. Notes Oper. Res. Math. Econ., 11, Springer, Berlin, 1969, 241–292 | MR
[16] Solow R.M., Growth theory: An exposition, Oxford Univ. Press, New York, 1970
[17] Souganidis P.E., “Approximation schemes for viscosity solutions of Hamilton–Jacobi equations”, J. Diff. Eqns., 59:1 (1985), 1–43 | DOI | MR | Zbl
[18] A. I. Subbotin, Minimax Inequalities and Hamilton–Jacobi Equations, Nauka, Moscow, 1991 (in Russian)
[19] A. I. Subbotin and A. M. Taras'ev, “Conjugate derivatives of the value function of a differential game”, Sov. Math., Dokl., 32 (1985), 162–166 | MR | Zbl
[20] A. M. Tarasyev and A. A. Usova, “Stabilizing the Hamiltonian system for constructing optimal trajectories”, Proc. Steklov Inst. Math., 277, 2012, 248–265 | DOI | MR | Zbl
[21] A. M. Taras'ev, A. A. Uspenskii, and V. N. Ushakov, “Approximation schemes and finite-difference operators for constructing generalized solutions of Hamilton–Jacobi equations”, J. Comput. Syst. Sci. Int., 33:6 (1995), 117–139 | MR | Zbl