Optimal Policies in the Dasgupta--Heal--Solow--Stiglitz Model under Nonconstant Returns to Scale
Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 83-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper offers a complete mathematically rigorous analysis of the welfare-maximizing capital investment and resource depletion policies in the Dasgupta–Heal–Solow–Stiglitz model with capital depreciation and any returns to scale. We establish a general existence result and show that an optimal admissible policy may not exist if the output elasticity of the resource equals one. We characterize the optimal policies by applying an appropriate version of the Pontryagin maximum principle for infinite-horizon optimal control problems. We also discuss general methodological pitfalls arising in infinite-horizon optimal control problems for economic growth models, which are not paid due attention in the economic literature so that the results presented there often seem not to be rigorously justified. We finish the paper with an economic interpretation and a discussion of the welfare-maximizing policies.
Keywords: optimal growth, exhaustible resources, nonconstant returns to scale, infinite horizon, existence of an optimal control, Pontryagin maximum principle.
@article{TRSPY_2019_304_a5,
     author = {S. M. Aseev and K. O. Besov and S. Yu. Kaniovski},
     title = {Optimal {Policies} in the {Dasgupta--Heal--Solow--Stiglitz} {Model} under {Nonconstant} {Returns} to {Scale}},
     journal = {Informatics and Automation},
     pages = {83--122},
     publisher = {mathdoc},
     volume = {304},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a5/}
}
TY  - JOUR
AU  - S. M. Aseev
AU  - K. O. Besov
AU  - S. Yu. Kaniovski
TI  - Optimal Policies in the Dasgupta--Heal--Solow--Stiglitz Model under Nonconstant Returns to Scale
JO  - Informatics and Automation
PY  - 2019
SP  - 83
EP  - 122
VL  - 304
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a5/
LA  - ru
ID  - TRSPY_2019_304_a5
ER  - 
%0 Journal Article
%A S. M. Aseev
%A K. O. Besov
%A S. Yu. Kaniovski
%T Optimal Policies in the Dasgupta--Heal--Solow--Stiglitz Model under Nonconstant Returns to Scale
%J Informatics and Automation
%D 2019
%P 83-122
%V 304
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a5/
%G ru
%F TRSPY_2019_304_a5
S. M. Aseev; K. O. Besov; S. Yu. Kaniovski. Optimal Policies in the Dasgupta--Heal--Solow--Stiglitz Model under Nonconstant Returns to Scale. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 83-122. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a5/

[1] Acemoglu D., Introduction to modern economic growth, Princeton Univ. Press, Princeton, NJ, 2009 | Zbl

[2] Antweiler W., Trefler D., “Increasing returns and all that: A view from trade”, Amer. Econ. Rev., 92:1 (2002), 93–119 | DOI

[3] Arrazola M., de Hevia J., “More on the estimation of the human capital depreciation rate”, Appl. Econ. Lett., 11:3 (2004), 145–148 | DOI | MR

[4] Arrow K.J., Kurz M., Public investment, the rate of return, and optimal fiscal policy, Johns Hopkins Press, Baltimore, MD, 1970

[5] S. M. Aseev, “On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems”, Proc. Steklov Inst. Math., 287, no. Suppl. 1, 2014, S11–S21 | DOI | MR | Zbl

[6] S. M. Aseev, “Adjoint variables and intertemporal prices in infinite-horizon optimal control problems”, Proc. Steklov Inst. Math., 290, 2015, 223–237 | DOI | MR | Zbl

[7] Aseev S., Besov K., Kaniovski S., The optimal use of exhaustible resources under nonconstant returns to scale, WIFO Work. Pap. 525, Austrian Inst. Econ. Res., Vienna, 2016 http://www.wifo.ac.at/wwa/pubid/59048

[8] S. M. Aseev, K. O. Besov, and A. V. Kryazhimskiy, “Infinite-horizon optimal control problems in economics”, Russ. Math. Surv., 67:2 (2012), 195–253 | DOI | DOI | MR | Zbl

[9] Aseev S.M., Kryazhimskiy A.V., “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43:3 (2004), 1094–1119 | DOI | MR | Zbl

[10] S. M. Aseev and A. V. Kryazhimskii, “The Pontryagin maximum principle and optimal economic growth problems”, Proc. Steklov Inst. Math., 257, 2007, 1–255 | DOI | MR | Zbl

[11] Aseev S.M., Veliov V.M., “Maximum principle for infinite-horizon optimal control problems with dominating discount”, Dyn. Contin. Discrete Impuls. Syst. Ser. B: Appl. Algorithms, 19:1-2 (2012), 43–63 | MR | Zbl

[12] Aseev S.M., Veliov V.M., “Needle variations in infinite-horizon optimal control”, Variational and optimal control problems on unbounded domains, Contemp. Math., 619, eds. by G. Wolansky, A.J. Zaslavski, Amer. Math. Soc., Providence, RI, 2014, 1–17 | DOI | MR | Zbl

[13] S. M. Aseev and V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions”, Proc. Steklov Inst. Math., 291, no. Suppl. 1, 2015, S22–S39 | MR | Zbl

[14] Asheim G.B., Buchholz W., Withagen C., “The Hartwick rule: Myths and facts”, Environ. Resour. Econ., 25:2 (2003), 129–150 | DOI | MR

[15] Balder E.J., “An existence result for optimal economic growth problems”, J. Math. Anal. Appl., 95:1 (1983), 195–213 | DOI | MR | Zbl

[16] Bardi U., The limits to growth revisited, Springer, New York, 2011

[17] Basu S., Fernald J.G., “Returns to scale in U.S. production: Estimates and implications”, J. Polit. Econ., 105:2 (1997), 249–283 | DOI | MR

[18] Beckerman W., “‘Sustainable development’: Is it a useful concept?”, Environ. Values., 3:3 (1994), 191–209 | DOI

[19] Benchekroun H., Withagen C., “The optimal depletion of exhaustible resources: A complete characterization”, Resour. Energy Econ., 33:3 (2011), 612–636 | DOI

[20] K. O. Besov, “On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function”, Proc. Steklov Inst. Math., 284, 2014, 50–80 | DOI | MR | Zbl

[21] K. O. Besov, “On Balder's existence theorem for infinite-horizon optimal control problems”, Math. Notes, 103:2 (2018), 167–174 | DOI | DOI | MR | Zbl

[22] Carlson D.A., Haurie A.B., Leizarowitz A., Infinite horizon optimal control: Deterministic and stochastic systems, Springer, Berlin, 1991 | MR | Zbl

[23] Cass D., “Optimum growth in an aggregative model of capital accumulation”, Rev. Econ. Stud., 32:3 (1965), 233–240 | DOI | MR

[24] Cesari L., Optimization—theory and applications: Problems with ordinary differential equations, Springer, New York, 1983 | MR | Zbl

[25] Dasgupta P., Heal G., “The optimal depletion of exhaustible resources”, Rev. Econ. Stud., 41 (1974), 3–28 | DOI

[26] Fernald J.G., Jones C.I., “The future of US economic growth”, Amer. Econ. Rev., 104:5 (2014), 44–49 | DOI

[27] Groot W., “Empirical estimates of the rate of depreciation of education”, Appl. Econ. Lett., 5:8 (1998), 535–538 | DOI

[28] Halkin H., “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42:2 (1974), 267–272 | DOI | MR | Zbl

[29] Hall C.A.S., Day J.W., Jr., “Revisiting the limits to growth after peak oil”, Amer. Sci., 97:3 (2009), 230–237 | DOI

[30] Hartl R.F., Sethi S.P., Vickson R.G., “A survey of the maximum principles for optimal control problems with state constraints”, SIAM Rev., 37:2 (1995), 181–218 | DOI | MR | Zbl

[31] Harrison M., Valuing the future: The social discount rate in cost-benefit analysis, Visit. Res. Pap. Canberra: Productivity Commission, 2010 https://ssrn.com/abstract=1599963

[32] Hartman P., Ordinary differential equations, J. Wiley and Sons, New York, 1964 | MR | Zbl

[33] Jones C.I., “Growth: With or without scale effects?”, Amer. Econ. Rev., 89:2 (1999), 139–144 | DOI

[34] Jones C.I., “Growth and ideas”, Handbook of economic growth, v. 1B, eds. by P. Aghion, S.N. Durlauf, North-Holland, Amsterdam, 2005, 1063–1111 | DOI

[35] Koopmans T.C., “On the concept of optimal economic growth”, The econometric approach to development planning, Pont. Acad. Sci. Scripta varia, 28, North-Holland, Amsterdam, 1965, 225–300

[36] Laitner J., Stolyarov D., “Aggregate returns to scale and embodied technical change: Theory and measurement using stock market data”, J. Monet. Econ., 51:1 (2004), 191–233 | DOI

[37] Li W.C.Y., Hall B.H., Depreciation of business R capital, BEA Work. Pap., Bureau Econ. Anal., Suitland, MD, 2016

[38] Meadows D.H., Meadows D.L., Randers J., Behrens W.W., III, The limits to growth: A report for the Club of Rome's project on the predicament of mankind, Universe Books, New York, 1972

[39] Michel P., “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50:4 (1982), 975–985 | DOI | MR | Zbl

[40] Nordhaus W.D., “A review of the Stern review on the economics of climate change”, J. Econ. Lit., 45:3 (2007), 686–702 | DOI

[41] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR | Zbl

[42] Ramsey F.P., “A mathematical theory of saving”, Econ. J., 38:152 (1928), 543–559 | DOI

[43] Romer P., “Cake eating, chattering, and jumps: Existence results for variational problems”, Econometrica, 54:4 (1986), 897–908 | DOI | MR | Zbl

[44] Seierstad A., Sydsæter K., “Sufficient conditions in optimal control theory”, Int. Econ. Rev., 18:2 (1977), 367–391 | DOI | MR | Zbl

[45] Seierstad A., Sydsæter K., Optimal control theory with economic applications, North-Holland, Amsterdam, 1987 | MR | Zbl

[46] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics I, Proc. Int. Summer Sch. (Varenna, Italy, 1967), Lect. Notes Oper. Res. Math. Econ., 11, Springer, Berlin, 1969, 241–292 | MR

[47] Solow R.M., “Intergenerational equity and exhaustible resources”, Rev. Econ. Stud., 41 (1974), 29–45 | DOI

[48] Stern N.H., The economics of climate change: The Stern review, Cambridge Univ. Press, Cambridge, 2007

[49] Stiglitz J., “Growth with exhaustible natural resources: Efficient and optimal growth paths”, Rev. Econ. Stud., 41 (1974), 123–137 | DOI

[50] Turner G., Is global collapse imminent?, MSSI Res. Pap. 4, Melbourne Sustainable Soc. Inst., Univ. Melbourne, Melbourne, 2014