Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2019_304_a2, author = {A. A. Agrachev}, title = {Spectrum of the {Second} {Variation}}, journal = {Informatics and Automation}, pages = {32--48}, publisher = {mathdoc}, volume = {304}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a2/} }
A. A. Agrachev. Spectrum of the Second Variation. Informatics and Automation, Optimal control and differential equations, Tome 304 (2019), pp. 32-48. http://geodesic.mathdoc.fr/item/TRSPY_2019_304_a2/
[1] A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint, Encycl. Math. Sci., 87, Springer, Berlin, 2004 | MR | Zbl
[2] S. V. Bolotin and D. V. Treschev, “Hill's formula”, Russ. Math. Surv., 65:2 (2010), 191–257 | DOI | DOI | MR | Zbl
[3] Conway J.B., Functions of one complex variable, Grad. Texts Math., 11, Springer, New York, 1973 | DOI | MR | Zbl
[4] Courant R., Hilbert D., Methods of mathematical physics, v. 1, Interscience, New York, 1953 | MR
[5] Kato T., Perturbation theory for linear operators, Grundl. Math. Wiss., 132, Springer, Berlin, 1980 | MR | Zbl