On constants in the Jackson--Stechkin theorem in the case of approximation by algebraic polynomials
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 26-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

New estimates are proved for the constants $J(k,\alpha )$ in the classical Jackson–Stechkin inequality $E_{n-1}(f) \le J(k, \alpha ) \omega _k (f,{\alpha \pi }/{n})$, $\alpha >0$, in the case of approximation of functions $f \in C[-1,1]$ by algebraic polynomials. The main result of the paper implies the following two-sided estimates for the constants: $1/2\le J(2k,\alpha )10$, $n \ge 2k(2k-1)$, $\alpha \ge 2$.
@article{TRSPY_2018_303_a2,
     author = {A. G. Babenko and Yu. V. Kryakin},
     title = {On constants in the {Jackson--Stechkin} theorem in the case of approximation by algebraic polynomials},
     journal = {Informatics and Automation},
     pages = {26--38},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a2/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - Yu. V. Kryakin
TI  - On constants in the Jackson--Stechkin theorem in the case of approximation by algebraic polynomials
JO  - Informatics and Automation
PY  - 2018
SP  - 26
EP  - 38
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a2/
LA  - ru
ID  - TRSPY_2018_303_a2
ER  - 
%0 Journal Article
%A A. G. Babenko
%A Yu. V. Kryakin
%T On constants in the Jackson--Stechkin theorem in the case of approximation by algebraic polynomials
%J Informatics and Automation
%D 2018
%P 26-38
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a2/
%G ru
%F TRSPY_2018_303_a2
A. G. Babenko; Yu. V. Kryakin. On constants in the Jackson--Stechkin theorem in the case of approximation by algebraic polynomials. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 26-38. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a2/

[1] N. I. Akhiezer, M. G. Krein, “On the best approximation of differentiable periodic functions by trigonometric sums”, Dokl. Akad. Nauk SSSR, 15:3 (1937), 107–112

[2] Babenko A. G., Kryakin Yu. V., Staszak P. T., “Special moduli of continuity and the constant in the Jackson–Stechkin theorem”, Constr. Approx., 38:3 (2013), 339–364 | DOI | MR | Zbl

[3] Bohr H., “Ein allgemeiner Satz über die Integration eines trigonometrischen Polynoms”, Prace Mat.-Fiz., 43 (1936), 273–288

[4] Boman J., Shapiro H. S., “Comparison theorems for a generalized modulus of continuity”, Ark. Mat., 9 (1971), 91–116 | DOI | MR | Zbl

[5] Yu. A. Brudnyi, “The approximation of functions by algebraic polynomials”, Math. USSR, Izv., 2:4 (1968), 735–743 | DOI | MR

[6] DeVore R. A., Lorentz G. G., Constructive approximation, Grundl. Math. Wiss., 303, Springer, Berlin, 1993 | MR | Zbl

[7] Dzyadyk V. K., Shevchuk I. A., Theory of uniform approximation of functions by polynomials, de Gruyter, Berlin, 2008 | MR | Zbl

[8] Favard J., “Sur l'approximation des fonctions périodiques par des polynomes trigonométriques”, C.R. Acad. sci. Paris, 203 (1936), 1122–1124

[9] Favard J., “Sur les meilleurs procédés d'approximation de certaines classes de fonctions par des polynomes trigonométriques”, Bull. sci. math., 61 (1937), 209–224 | MR

[10] Foucart S., Kryakin Yu., Shadrin A., “On the exact constant in the Jackson–Stechkin inequality for the uniform metric”, Constr. Approx., 29:2 (2009), 157–179 | DOI | MR | Zbl

[11] Gilewicz J., Kryakin Yu. V., Shevchuk I. A., “Boundedness by $3$ of the Whitney interpolation constant”, J. Approx. Theory, 119:2 (2002), 271–290 | DOI | MR | Zbl

[12] N. P. Korneichuk, “The exact constant in D. Jackson's theorem on best uniform approximation of continuous periodic functions”, Sov. Math., Dokl., 3 (1962), 1040–1041 | MR | Zbl

[13] Yu. V. Kryakin, “On Whitney's theorem and constants”, Russ Acad. Sci, Sb. Math., 81:2 (1995), 281–295 | MR | Zbl

[14] Yu. V. Kryakin, “On functions with bounded $n$th differences”, Izv. Math., 61:2 (1997), 331–346 | DOI | DOI | MR | Zbl

[15] Kryakin Yu. V., “Whitney's constants and Sendov's conjectures”, Math. Balkanica (N.S.), 16:1–4 (2002), 235–247 | MR | Zbl

[16] A. V. Mironenko, “On the Jackson–Stechkin inequality for algebraic polynomials”, Proc. Steklov Inst. Math., 273, Suppl. 1 (2011), 116–123 | DOI | MR | Zbl

[17] Neumann C., Untersuchungen über das Logarithmische und Newton'sche Potential, Teubner, Leipzig, 1877 | Zbl

[18] Sendov Bl., “On the constants of H. Whitney”, C. r. Acad. Bulg. sci., 35:4 (1982), 431–434 | MR | Zbl

[19] Sendov Bl., “The constants of H. Whitney are bounded”, C. r. Acad. Bulg. sci., 38:10 (1985), 1299–1302 | MR | Zbl

[20] Shapiro H. S., “A Tauberian theorem related to approximation theory”, Acta math., 120 (1968), 279–292 | DOI | MR | Zbl

[21] Sinwel H. F., “Uniform approximation of differentiable functions by algebraic polynomials”, J. Approx. Theory, 32 (1981), 1–8 | DOI | MR | Zbl

[22] Stekloff W., “Sur les problèmes de représentation des fonctions a l'aide de polynomes, du calcul approché des intégrales définies, du développement des fonctions en séries infinies suivant les polynomes et de l'interpolation, considérées au point de vue des idées de Tchébycheff”, Proc. Int. Math. Congr. (Toronto, 1924), v. 1, Univ. Toronto Press, Toronto, 1928, 631–640

[23] O. L. Vinogradov, V. V. Zhuk, “Estimates for functionals with a known finite set of moments in terms of high order moduli of continuity in spaces of functions defined on a segment”, St. Petersburg Math. J., 25:3 (2014), 421–446 | DOI | MR | MR | Zbl

[24] Whitney H., “On functions with bounded $n$-th differences”, J. math. pures appl. Sér. 9, 36 (1957), 67–95 | MR | Zbl

[25] Zhelnov O. D., “Whitney constants are bounded by $1$ for $k=5,6,7$”, East J. Approx., 8:1 (2002), 1–14 | MR | Zbl

[26] O. D. Zhelnov, The Whitney inequality and its generalizations, Cand. Sci. (Phys.–Math.) Dissertation, Inst. Math. Natl. Acad. Sci. Ukraine, Kiev, 2004