Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_303_a14, author = {A. Olevskii and A. Ulanovskii}, title = {On irregular sampling and interpolation in {Bernstein} spaces}, journal = {Informatics and Automation}, pages = {193--208}, publisher = {mathdoc}, volume = {303}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a14/} }
A. Olevskii; A. Ulanovskii. On irregular sampling and interpolation in Bernstein spaces. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 193-208. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a14/
[1] S. N. Bernstein, “The extension of properties of trigonometric polynomials to entire functions of finite degree”, Izv. Akad. Nauk SSSR, Ser. Mat., 12:5 (1948), 421–444
[2] Beurling A., “Balayage of Fourier–Stieltjes transforms”, The collected works of Arne Beurling, Ch. IV, v. 2, Harmonic analysis, Birkhäuser, Boston, 1989, 341–350 | MR
[3] Beurling A., “Interpolation for an interval on $\mathbb R^1$”, The collected works of Arne Beurling, Ch. V, v. 2, Harmonic analysis, Birkhäuser, Boston, 1989, 351–365 | MR
[4] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982 | MR | Zbl
[5] Liu H. C., Macintyre A. J., “Cartwright's theorem on functions bounded at the integers”, Proc. Amer. Math. Soc., 12 (1961), 460–462 | MR | Zbl
[6] Olevskii A., Ulanovskii A., “On irregular sampling in Bernstein spaces”, C.R. Math. Acad. sci. Paris, 353:1 (2015), 47–50 | DOI | MR | Zbl
[7] Olevskii A. M., Ulanovskii A., Functions with disconnected spectrum: Sampling, interpolation, translates, Univ. Lect. Ser., 65, Amer. Math. Soc., Providence, RI, 2016 | DOI | MR | Zbl
[8] Al. A. Privalov, “Growth of the degrees of polynomial bases and approximation of trigonometric projectors”, Math. Notes, 42:2 (1987), 619–623 | DOI | MR | Zbl