On irregular sampling and interpolation in Bernstein spaces
Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 193-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sharp estimates of the sampling and interpolation constants in spaces of polynomials are obtained. These estimates are used to deduce asymptotically sharp estimates of the sampling and interpolation constants for Bernstein spaces as the density of a sampling set approaches the critical value.
Keywords: sampling, Bernstein spaces.
Mots-clés : interpolation
@article{TRSPY_2018_303_a14,
     author = {A. Olevskii and A. Ulanovskii},
     title = {On irregular sampling and interpolation in {Bernstein} spaces},
     journal = {Informatics and Automation},
     pages = {193--208},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a14/}
}
TY  - JOUR
AU  - A. Olevskii
AU  - A. Ulanovskii
TI  - On irregular sampling and interpolation in Bernstein spaces
JO  - Informatics and Automation
PY  - 2018
SP  - 193
EP  - 208
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a14/
LA  - ru
ID  - TRSPY_2018_303_a14
ER  - 
%0 Journal Article
%A A. Olevskii
%A A. Ulanovskii
%T On irregular sampling and interpolation in Bernstein spaces
%J Informatics and Automation
%D 2018
%P 193-208
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a14/
%G ru
%F TRSPY_2018_303_a14
A. Olevskii; A. Ulanovskii. On irregular sampling and interpolation in Bernstein spaces. Informatics and Automation, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 193-208. http://geodesic.mathdoc.fr/item/TRSPY_2018_303_a14/

[1] S. N. Bernstein, “The extension of properties of trigonometric polynomials to entire functions of finite degree”, Izv. Akad. Nauk SSSR, Ser. Mat., 12:5 (1948), 421–444

[2] Beurling A., “Balayage of Fourier–Stieltjes transforms”, The collected works of Arne Beurling, Ch. IV, v. 2, Harmonic analysis, Birkhäuser, Boston, 1989, 341–350 | MR

[3] Beurling A., “Interpolation for an interval on $\mathbb R^1$”, The collected works of Arne Beurling, Ch. V, v. 2, Harmonic analysis, Birkhäuser, Boston, 1989, 351–365 | MR

[4] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982 | MR | Zbl

[5] Liu H. C., Macintyre A. J., “Cartwright's theorem on functions bounded at the integers”, Proc. Amer. Math. Soc., 12 (1961), 460–462 | MR | Zbl

[6] Olevskii A., Ulanovskii A., “On irregular sampling in Bernstein spaces”, C.R. Math. Acad. sci. Paris, 353:1 (2015), 47–50 | DOI | MR | Zbl

[7] Olevskii A. M., Ulanovskii A., Functions with disconnected spectrum: Sampling, interpolation, translates, Univ. Lect. Ser., 65, Amer. Math. Soc., Providence, RI, 2016 | DOI | MR | Zbl

[8] Al. A. Privalov, “Growth of the degrees of polynomial bases and approximation of trigonometric projectors”, Math. Notes, 42:2 (1987), 619–623 | DOI | MR | Zbl