Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 354-376
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a theory of periodic and quasiperiodic functional continued fractions in the field $k((h))$ for a linear polynomial $h$ and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and $S$-units for appropriate sets $S$. We prove the periodicity of quasiperiodic elements of the form $\sqrt f/dh^s$, where $s$ is an integer, the polynomial $f$ defines a hyperelliptic field, and the polynomial $d$ is a divisor of $f$; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element $\sqrt f$ is periodic. We also analyze the continued fraction expansion of the key element $\sqrt f/h^{g+1}$, which defines the set of quasiperiodic elements of a hyperelliptic field.
@article{TRSPY_2018_302_a17,
author = {V. P. Platonov and M. M. Petrunin},
title = {Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields},
journal = {Informatics and Automation},
pages = {354--376},
publisher = {mathdoc},
volume = {302},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a17/}
}
TY - JOUR AU - V. P. Platonov AU - M. M. Petrunin TI - Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields JO - Informatics and Automation PY - 2018 SP - 354 EP - 376 VL - 302 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a17/ LA - ru ID - TRSPY_2018_302_a17 ER -
%0 Journal Article %A V. P. Platonov %A M. M. Petrunin %T Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields %J Informatics and Automation %D 2018 %P 354-376 %V 302 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a17/ %G ru %F TRSPY_2018_302_a17
V. P. Platonov; M. M. Petrunin. Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 354-376. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a17/