Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_302_a14, author = {D. V. Millionshchikov}, title = {Polynomial {Lie} algebras and growth of their finitely generated {Lie} subalgebras}, journal = {Informatics and Automation}, pages = {316--333}, publisher = {mathdoc}, volume = {302}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a14/} }
D. V. Millionshchikov. Polynomial Lie algebras and growth of their finitely generated Lie subalgebras. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 316-333. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a14/
[1] V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200 | DOI | MR
[2] V. M. Buchstaber, “Polynomial Lie algebras and the Zelmanov–Shalev theorem”, Russ. Math. Surv., 72:6 (2017), 1168–1170 | DOI | DOI | MR
[3] V. M. Buchstaber and D. V. Leykin, “Polynomial Lie algebras”, Funct. Anal. Appl., 36 (2002), 267–280 | DOI | DOI | MR
[4] V. G. Kac, “Simple irreducible graded Lie algebras of finite growth”, Math. USSR, Izv., 2:6 (1968), 1271–1311 | DOI | MR
[5] Krause G. R., Lenagan T. H., Growth of algebras and Gelfand–Kirillov dimension, Amer. Math. Soc., Providence, RI, 2000 | MR
[6] A. N. Leznov, V. G. Smirnov, A. B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, Theor. Math. Phys., 51:1 (1982), 322–330 | DOI | MR | MR
[7] Mathieu O., “Classification of simple graded Lie algebras of finite growth”, Invent. math., 108 (1992), 455–519 | DOI | MR
[8] Millionschikov D. V., “Graded filiform Lie algebras and symplectic nilmanifolds”, Geometry, topology, and mathematical physics, S. P. Novikov's seminar 2002–2003, AMS Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 259–279 | MR
[9] D. V. Millionshchikov, “Characteristic Lie algebras of the sinh-Gordon and Tzitzeica equations”, Russ. Math. Surv., 72:6 (2017), 1174–1176 | DOI | DOI | MR
[10] Millionshchikov D., “Lie Algebras of Slow Growth and Klein–Gordon PDE”, Algebr. Represent. Theory, 21:5 (2018), 1037–1069 | DOI | MR
[11] Petrogradsky V. M., “Examples of self-iterating Lie algebras”, J. Algebra, 302:2 (2006), 881–886 | DOI | MR
[12] Rinehart G. S., “Differential forms on general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR
[13] Smith M. K., “Universal enveloping algebras with subexponential but not polynomially bounded growth”, Proc. Amer. Math. Soc., 60 (1976), 22–24 | DOI | MR
[14] A. V. Zhiber, R. D. Murtazina, I. T. Habibullin, A. B. Shabat, “Characteristic Lie rings and integrable models in mathematical physics”, Ufa Math. J., 4:3 (2012), 17–85 | MR