$L_\infty $-locality of three-dimensional Peano curves
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 234-267

Voir la notice de l'article provenant de la source Math-Net.Ru

A theory and corresponding algorithms are developed for fast and accurate evaluation of the $L_\infty $-locality (i.e., the maximum cube-to-line ratio in the maximum metric) for polyfractal three-dimensional Peano curves.
Keywords: maximum metric, three-dimensional Peano curves, dyadic curves, cubically decomposable curves, cube-to-linear ratio.
Mots-clés : polyfractal curves
@article{TRSPY_2018_302_a10,
     author = {A. A. Korneev and E. V. Shchepin},
     title = {$L_\infty $-locality of three-dimensional {Peano} curves},
     journal = {Informatics and Automation},
     pages = {234--267},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a10/}
}
TY  - JOUR
AU  - A. A. Korneev
AU  - E. V. Shchepin
TI  - $L_\infty $-locality of three-dimensional Peano curves
JO  - Informatics and Automation
PY  - 2018
SP  - 234
EP  - 267
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a10/
LA  - ru
ID  - TRSPY_2018_302_a10
ER  - 
%0 Journal Article
%A A. A. Korneev
%A E. V. Shchepin
%T $L_\infty $-locality of three-dimensional Peano curves
%J Informatics and Automation
%D 2018
%P 234-267
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a10/
%G ru
%F TRSPY_2018_302_a10
A. A. Korneev; E. V. Shchepin. $L_\infty $-locality of three-dimensional Peano curves. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 234-267. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a10/