$L_\infty $-locality of three-dimensional Peano curves
Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 234-267
Voir la notice de l'article provenant de la source Math-Net.Ru
A theory and corresponding algorithms are developed for fast and accurate evaluation of the $L_\infty $-locality (i.e., the maximum cube-to-line ratio in the maximum metric) for polyfractal three-dimensional Peano curves.
Keywords:
maximum metric, three-dimensional Peano curves, dyadic curves, cubically decomposable curves, cube-to-linear ratio.
Mots-clés : polyfractal curves
Mots-clés : polyfractal curves
@article{TRSPY_2018_302_a10,
author = {A. A. Korneev and E. V. Shchepin},
title = {$L_\infty $-locality of three-dimensional {Peano} curves},
journal = {Informatics and Automation},
pages = {234--267},
publisher = {mathdoc},
volume = {302},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a10/}
}
A. A. Korneev; E. V. Shchepin. $L_\infty $-locality of three-dimensional Peano curves. Informatics and Automation, Topology and physics, Tome 302 (2018), pp. 234-267. http://geodesic.mathdoc.fr/item/TRSPY_2018_302_a10/