On the definitions of boundary values of generalized solutions to an elliptic-type equation
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 48-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

An elliptic-type equation with variable coefficients is considered. An overview is given of the definitions of boundary values of generalized solutions to this equation. Conditions for the existence of boundary values as well as conditions for the existence and uniqueness of solutions to the corresponding Dirichlet problem are analyzed.
@article{TRSPY_2018_301_a3,
     author = {N. A. Gusev},
     title = {On the definitions of boundary values of generalized solutions to an elliptic-type equation},
     journal = {Informatics and Automation},
     pages = {48--52},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a3/}
}
TY  - JOUR
AU  - N. A. Gusev
TI  - On the definitions of boundary values of generalized solutions to an elliptic-type equation
JO  - Informatics and Automation
PY  - 2018
SP  - 48
EP  - 52
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a3/
LA  - ru
ID  - TRSPY_2018_301_a3
ER  - 
%0 Journal Article
%A N. A. Gusev
%T On the definitions of boundary values of generalized solutions to an elliptic-type equation
%J Informatics and Automation
%D 2018
%P 48-52
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a3/
%G ru
%F TRSPY_2018_301_a3
N. A. Gusev. On the definitions of boundary values of generalized solutions to an elliptic-type equation. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 48-52. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a3/

[1] Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions”, Russ. Math. Surv., 71:6 (2016), 1081–1134 | DOI | DOI | MR | Zbl

[2] Falconer K. J., The geometry of fractal sets, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl

[3] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[4] A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | Zbl

[5] A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439 | DOI | DOI | MR | Zbl

[6] A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409 | DOI | DOI | MR | Zbl

[7] A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl

[8] M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700 | DOI | DOI

[9] V. P. Mikhailov, “On the boundary values of solutions of elliptic equations in domains with a smooth boundary”, Math. USSR-Sb., 30:2 (1976), 143–166 | DOI | MR | Zbl

[10] I. M. Petrushko, “On boundary values of solutions of elliptic equations in domains with Lyapunov boundary”, Math. USSR-Sb., 47:1 (1984), 43–72 | DOI | MR | Zbl | Zbl

[11] I. M. Petrushko, “On boundary values in $\mathcal L_p$, $p>1$, of solutions of elliptic equations in domains with a Lyapunov boundary”, Math. USSR-Sb., 48:2 (1984), 565–585 | DOI | MR | Zbl | Zbl

[12] B. O. Volkov, “Lévy Laplacians and instantons”, Proc. Steklov Inst. Math., 290 (2015), 210–222 | DOI | DOI | MR | Zbl

[13] V. V. Zharinov, “Bäcklund transformations”, Theor. Math. Phys., 189:3 (2016), 1681–1692 | DOI | DOI | MR | Zbl