On a~new approach to the problem of distribution of zeros of Hermite--Pad\'e polynomials for a~Nikishin system
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 259-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to the problem of the zero distribution of type I Hermite–Padé polynomials for a pair of functions $f_1,f_2$ forming a Nikishin system is discussed. Unlike the traditional vector approach, we give an answer in terms of a scalar equilibrium problem with harmonic external field which is posed on a two-sheeted Riemann surface.
Keywords: Hermite–Padé polynomials, non-Hermitian orthogonal polynomials, distribution of zeros.
@article{TRSPY_2018_301_a18,
     author = {S. P. Suetin},
     title = {On a~new approach to the problem of distribution of zeros of {Hermite--Pad\'e} polynomials for {a~Nikishin} system},
     journal = {Informatics and Automation},
     pages = {259--275},
     publisher = {mathdoc},
     volume = {301},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a18/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - On a~new approach to the problem of distribution of zeros of Hermite--Pad\'e polynomials for a~Nikishin system
JO  - Informatics and Automation
PY  - 2018
SP  - 259
EP  - 275
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a18/
LA  - ru
ID  - TRSPY_2018_301_a18
ER  - 
%0 Journal Article
%A S. P. Suetin
%T On a~new approach to the problem of distribution of zeros of Hermite--Pad\'e polynomials for a~Nikishin system
%J Informatics and Automation
%D 2018
%P 259-275
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a18/
%G ru
%F TRSPY_2018_301_a18
S. P. Suetin. On a~new approach to the problem of distribution of zeros of Hermite--Pad\'e polynomials for a~Nikishin system. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 259-275. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a18/

[1] A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems”, Sb. Math., 190:5 (1999), 631–669 | DOI | DOI | MR | Zbl

[2] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl

[3] A. I. Aptekarev, A. I. Bogolyubskii, M. L. Yattselev, “Convergence of ray sequences of Frobenius–Padé approximants”, Sb. Math., 208:3 (2017), 313–334 | DOI | DOI | MR | Zbl

[4] Aptekarev A. I., Kuijlaars A. B. J., Van Assche W., “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus $0$)”, Int. Math. Res. Pap., 2008 (2008), rpm007 | MR | Zbl

[5] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[6] Aptekarev A. I., Yattselev M. L., “Padé approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta math., 215:2 (2015), 217–280 | DOI | MR | Zbl

[7] Baratchart L., Stahl H., Yattselev M., “Weighted extremal domains and best rational approximation”, Adv. Math., 229:1 (2012), 357–407 | DOI | MR | Zbl

[8] D. Barrios Rolanía, J. S. Geronimo, G. López Lagomasino, “High-order recurrence relations, Hermite–Padé approximation and Nikishin systems”, Sb. Math., 209:3 (2018), 385–420 | DOI | DOI | MR

[9] V. I. Buslaev, “Convergence of multipoint Padé approximants of piecewise analytic functions”, Sb. Math., 204:2 (2013), 190–222 | DOI | DOI | MR | Zbl

[10] V. I. Buslaev, “Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions”, Sb. Math., 206:2 (2015), 175–200 | DOI | DOI | MR | Zbl

[11] V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721 | DOI | DOI | MR

[12] V. I. Buslaev, “An analog of Gonchar's theorem for the $m$-point version of Leighton's conjecture”, Proc. Steklov Inst. Math., 293 (2016), 127–139 | DOI | DOI | MR | Zbl

[13] V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Method of interior variations and existence of $S$-compact sets”, Proc. Steklov Inst. Math., 279 (2012), 25–51 | DOI | MR | Zbl

[14] V. I. Buslaev, S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials”, Proc. Steklov Inst. Math., 290 (2015), 256–263 | DOI | MR | Zbl

[15] Buslaev V. I., Suetin S. P., “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory., 206 (2016), 48–67 | DOI | MR | Zbl

[16] E. M. Chirka, Riemann Surfaces, Lekts. Kursy Nauchno-Obrazov. Tsentra, 1, Steklov Math. Inst., Moscow, 2006 | DOI | Zbl

[17] A. A. Gonchar, E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl

[18] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl

[19] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl

[20] A. A. Gonchar, S. P. Suetin, “On Padé Approximants of Markov-Type Meromorphic Functions”, Proc. Steklov Inst. Math., 272, Suppl. 2 (2011), S58–S95 | DOI | MR | Zbl

[21] Ikonomov N. R., Kovacheva R. K., Suetin S. P., Some numerical results on the behavior of zeros of polynomials, E-print, 2015, arXiv: 1501.07090[math.CV]

[22] Ikonomov N. R., Kovacheva R. K., Suetin S. P., On the limit zero distribution of type I Hermite–Padé polynomials, E-print, 2015, arXiv: 1506.08031[math.CV]

[23] Ikonomov N. R., Kovacheva R. K., Suetin S. P., Zero distribution of Hermite–Padé polynomials and convergence properties of Hermite approximants for multivalued analytic functions, E-print, 2016, arXiv: 1603.03314[math.CV]

[24] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “Convergence of Shafer quadratic approximants”, Russ. Math. Surv., 71:2 (2016), 373–375 | DOI | DOI | MR | Zbl

[25] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface”, Russ. Math. Surv., 72:4 (2017), 671–706 | DOI | DOI | MR | Zbl

[26] A. V. Komlov, S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials”, Russ. Math. Surv., 70:6 (2015), 1179–1181 | DOI | DOI | MR | Zbl

[27] N. S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972 | MR | MR | Zbl

[28] M. A. Lapik, “Families of vector measures which are equilibrium measures in an external field”, Sb. Math., 206:2 (2015), 211–224 | DOI | DOI | MR | Zbl

[29] G. López Lagomasino, W. Van Assche, “Riemann–Hilbert analysis for a Nikishin system”, Sb. Math., 209:7 (2018) ; arXiv: 1612.07108[math.CA] | DOI | MR

[30] Lubinsky D. S., Sidi A., Stahl H., “Asymptotic zero distribution of biorthogonal polynomials”, J. Approx. Theory, 190 (2015), 26–49 | DOI | MR | Zbl

[31] Martínez-Finkelshtein A., Rakhmanov E. A., Suetin S. P., “Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall's work 25 years later”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 165–193 | DOI | MR | Zbl

[32] Martínez-Finkelshtein A., Rakhmanov E. A., Suetin S. P., “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions”, Modern trends in constructive function theory, Contemp. Math., 661, Amer. Math. Soc., Providence, RI, 2016, 199–228 ; arXiv: 1502.01202[math.CA] | DOI | MR | Zbl

[33] E. M. Nikishin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl | Zbl

[34] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Sov. Math., 30:2 (1986), 43–52 | MR | Zbl

[35] E. M. Nikishin, V. N. Sorokin, Rational Approximations and Orthogonality, Am. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl

[36] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[37] Nuttall J., “Asymptotics of generalized Jacobi polynomials”, Constr. Approx., 2:1 (1986), 59–77 | DOI | MR | Zbl

[38] Nuttall J., Trojan G. M., “Asymptotics of Hermite–Padé polynomials for a set of functions with different branch points”, Constr. Approx., 3:1 (1987), 13–29 | DOI | MR | Zbl

[39] Rakhmanov E. A., “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl

[40] E. A. Rakhmanov, “The Gonchar–Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266 | DOI | DOI | MR | Zbl

[41] E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russ. Math. Surv., 73:3 (2018) ; arXiv: 1712.07055[math.CV] | DOI | DOI | MR

[42] E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite–Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390 | DOI | DOI | MR | Zbl

[43] Stahl H., “Asymptotics of Hermite–Padé polynomials and related convergence results: A summary of results”, Nonlinear numerical methods and rational approximation, Math. Appl., 43, D. Reidel, Dordrecht, 1988, 23–53 | MR | Zbl

[44] Stahl H., “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[45] Stahl H. R., Sets of minimal capacity and extremal domains, E-print, 2012, arXiv: 1205.3811[math.CA]

[46] S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russ. Math. Surv., 70:5 (2015), 901–951 | DOI | DOI | MR | Zbl

[47] S. P. Suetin, “Zero distribution of Hermite–Padé polynomials and localization of branch points of multivalued analytic functions”, Russ. Math. Surv., 71:5 (2016), 976–978 | DOI | DOI | MR | Zbl

[48] S. P. Suetin, “An analog of Pólya's theorem for multivalued analytic functions with finitely many branch points”, Math. Notes, 101:5 (2017), 888–898 | DOI | DOI | MR | Zbl

[49] S. P. Suetin, “On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions”, Russ. Math. Surv., 72:2 (2017), 375–377 | DOI | DOI | MR | MR | Zbl

[50] S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials for a complex Nikishin system”, Russ. Math. Surv., 73:2 (2018), 363–365 | DOI | DOI | MR