Feynman--Chernoff iterations and their applications in quantum dynamics
Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 209-218
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of Chernoff equivalence for operator-valued functions is generalized to the solutions of quantum evolution equations with respect to the density matrix. A semigroup is constructed that is Chernoff equivalent to the operator function arising as the mean value of random semigroups. As applied to the problems of quantum optics, an operator is constructed that is Chernoff equivalent to a translation operator generating coherent states.
Keywords:
Feynman formulas, Chernoff equivalence, averaging of quantum semigroups, coherent states.
Mots-clés : Liouville equation
Mots-clés : Liouville equation
@article{TRSPY_2018_301_a14,
author = {Yu. N. Orlov and V. Zh. Sakbaev},
title = {Feynman--Chernoff iterations and their applications in quantum dynamics},
journal = {Informatics and Automation},
pages = {209--218},
publisher = {mathdoc},
volume = {301},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a14/}
}
TY - JOUR AU - Yu. N. Orlov AU - V. Zh. Sakbaev TI - Feynman--Chernoff iterations and their applications in quantum dynamics JO - Informatics and Automation PY - 2018 SP - 209 EP - 218 VL - 301 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a14/ LA - ru ID - TRSPY_2018_301_a14 ER -
Yu. N. Orlov; V. Zh. Sakbaev. Feynman--Chernoff iterations and their applications in quantum dynamics. Informatics and Automation, Complex analysis, mathematical physics, and applications, Tome 301 (2018), pp. 209-218. http://geodesic.mathdoc.fr/item/TRSPY_2018_301_a14/