Small-amplitude discontinuities of solutions to equations of continuum mechanics
Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 65-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general approach is developed for problems of propagation of weak discontinuities against a known background for systems of hyperbolic equations that can be represented in a variational form. A weak shock wave is considered as an approximation to a solution containing a weak discontinuity. This method is applicable to the description of various adiabatic processes in continuum mechanics in the presence of variable force fields.
@article{TRSPY_2018_300_a3,
     author = {A. N. Golubyatnikov},
     title = {Small-amplitude discontinuities of solutions to equations of continuum mechanics},
     journal = {Informatics and Automation},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a3/}
}
TY  - JOUR
AU  - A. N. Golubyatnikov
TI  - Small-amplitude discontinuities of solutions to equations of continuum mechanics
JO  - Informatics and Automation
PY  - 2018
SP  - 65
EP  - 75
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a3/
LA  - ru
ID  - TRSPY_2018_300_a3
ER  - 
%0 Journal Article
%A A. N. Golubyatnikov
%T Small-amplitude discontinuities of solutions to equations of continuum mechanics
%J Informatics and Automation
%D 2018
%P 65-75
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a3/
%G ru
%F TRSPY_2018_300_a3
A. N. Golubyatnikov. Small-amplitude discontinuities of solutions to equations of continuum mechanics. Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 65-75. http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a3/

[1] V. L. Berdichevsky, Variational Principles of Continuum Mechanics, v. I, Fundamentals, Springer, Berlin, 2009 ; v. II, Applications, Springer, Berlin, 2009 | MR | MR

[2] Chernyi G. G., Gas Dynamics, CRC Press, Boca Raton, FL, 1994

[3] M. E. Eglit (Ed.), Continuum Mechanics via Problems and Exercises, v. I, Theory and Problems, World. Sci., Singapore, 1996; v. II, Answers and Solutions, World. Sci., Singapore, 1996

[4] Crussard L., “Sur la déformation des ondes dans les gaz et sur les interférences finies”, C. r. Acad. sci. Paris, 156:6 (1913), 447–450

[5] Crussard L., “Sur la propagation et l'altération des ondes de choc”, C. r. Acad. sci. Paris, 156:8 (1913), 611–613

[6] A. N. Golubyatnikov, “Symmetries of continua”, Usp. Mekh., 2:1 (2003), 126–183

[7] A. N. Golubyatnikov, S. D. Kovalevskaya, “Propagation of discontinuities against a static background”, Fluid Dyn., 52 (2017), 321–328 | DOI | DOI | MR

[8] A. G. Kulikovskii, G. A. Lyubimov, Magnetohydrodynamics, Addison-Wesley, Reading, MA, 1965

[9] A. G. Kulikovskii, E. I. Sveshnikova, Nonlinear Waves in Elastic Media, CRC Press, Boca Raton, FL, 1995 | MR

[10] L. D. Landau, “On shock waves at large distances from the place of their origin”, J. Phys. USSR, 9 (1945), 496–500

[11] L. D. Landau, E. M. Lifshits, Course of Theoretical Physics, v. 6, Fluid Mechanics, Pergamon, Oxford, 1987

[12] D. Ya. Martynov, A Course in Practical Astrophysics, 2nd ed., Saad Publ., Karachi, Pakistan, 1975

[13] Nitsche J., “Über Unstetigkeiten in den Ableitungen von Lösungen quasilinearer hyperbolischer Differentialgleichungssysteme”, J. Ration. Mech. Anal., 2:2 (1953), 291–297 | MR

[14] B. L. Rozhdestvenskii, N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Am. Math. Soc., Providence, RI, 1983 | MR | MR

[15] L. I. Sedov, “Mathematical methods for constructing new models of continuous media”, Russ. Math. Surv., 20:5 (1965), 123–182 | DOI | MR | Zbl

[16] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, CRC Press, Boca Raton, FL, 1993 | MR

[17] L. I. Sedov, Mechanics of Continuous Media, v. 1, 2, World Sci., River Edge, NJ, 1997 | MR | MR

[18] L. I. Sedov, A. G. Tsypkin, Foundations of the Macroscopic Theories of Gravitation and Electromagnetism, Nauka, Moscow, 1989 (in Russian) | MR

[19] N. R. Sibgatullin, Oscillation and Waves in Strong Gravitational and Electromagnetic Fields, Springer, Berlin, 1991 | MR | MR