Roll wave structure in long tubes with compliant walls
Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 205-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a flow of a fluid in a long vertical tube with elastic walls and show that, for certain parameters of the flow, small perturbations of the flow at the inlet section of the tube give rise to roll waves. Depending on the properties of the closing relation, either regular or anomalous roll waves are formed. In the latter case, a roll wave is characterized by two strong discontinuities that connect regions of continuous flow. We present the results of numerical simulations of the development of a pulsatile flow mode for convex and nonconvex closing relations that demonstrate the formation of regular and anomalous roll waves. We also construct a two-parameter class of exact periodic solutions and obtain existence diagrams for roll waves.
Keywords: flow in elastic tube, hyperbolic equations, Whitham condition, roll waves.
@article{TRSPY_2018_300_a16,
     author = {A. A. Chesnokov and V. Yu. Liapidevskii},
     title = {Roll wave structure in long tubes with compliant walls},
     journal = {Informatics and Automation},
     pages = {205--215},
     publisher = {mathdoc},
     volume = {300},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a16/}
}
TY  - JOUR
AU  - A. A. Chesnokov
AU  - V. Yu. Liapidevskii
TI  - Roll wave structure in long tubes with compliant walls
JO  - Informatics and Automation
PY  - 2018
SP  - 205
EP  - 215
VL  - 300
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a16/
LA  - ru
ID  - TRSPY_2018_300_a16
ER  - 
%0 Journal Article
%A A. A. Chesnokov
%A V. Yu. Liapidevskii
%T Roll wave structure in long tubes with compliant walls
%J Informatics and Automation
%D 2018
%P 205-215
%V 300
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a16/
%G ru
%F TRSPY_2018_300_a16
A. A. Chesnokov; V. Yu. Liapidevskii. Roll wave structure in long tubes with compliant walls. Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 205-215. http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a16/

[1] Boudlal A., “Roll waves and plugs in two-layer flows”, Eur. J. Appl. Math., 19:1 (2008), 1–19 | DOI | MR

[2] Boudlal A., Liapidevskii V. Yu., “Roll waves in a non-regular inclined channel”, Eur. J. Appl. Math., 15:3 (2004), 257–271 | DOI | MR

[3] A. Boudlal, V. Yu. Liapidevskii, “Roll waves in channels with an active gas phase”, J. Appl. Mech. Tech. Phys., 56 (2015), 541–548 | DOI | MR

[4] Brook B. S., Falle S. A. E. G., Pedley T. J., “Numerical solutions for unsteady gravity-driven flows in collapsible tubes: Evolution and roll-wave instability of a steady state”, J. Fluid Mech., 396 (1999), 223–256 | DOI | MR

[5] Cancelli C., Pedley T. J., “A separated-flow model for collapsible-tube oscillations”, J. Fluid Mech., 157 (1985), 375–404 | DOI

[6] Chesnokov A., Liapidevskii V., Stepanova I., “Roll waves structure in two-layer Hele–Shaw flows”, Wave Motion, 73 (2017), 1–10 | DOI | MR

[7] Dressler R. F., “Mathematical solution of the problem of roll-waves in inclined open channels”, Commun. Pure Appl. Math., 2:2–3 (1949), 149–194 | DOI | MR

[8] Dyment A., Boudlal A., “A theoretical model for gas-liquid slug flow in down inclined ducts”, Int. J. Multiphase Flow, 30:5 (2004), 521–550 | DOI

[9] Formaggia L., Lamponi D., Quarteroni A., “One-dimensional models for blood flow in arteries”, J. Eng. Math., 47:3–4 (2003), 251–276 | DOI | MR

[10] Heil M., Jensen O. E., “Flows in deformable tubes and channels: Theoretical models and biological applications”, Flow past highly compliant boundaries and in collapsible tubes, Proc. IUTAM Symp. (Univ. Warwick, UK, 2001), Fluid Mech. Appl., 72, eds. P. W. Carpenter, T. J. Pedley, Kluwer, Dordrecht, 2003, 15–49 | MR

[11] V. Yu. Lyapidevskii, “The structure of roll waves in two-layer flows”, J. Appl. Math. Mech., 64 (2000), 937–943 | DOI

[12] V. Yu. Lyapidevskii, V. M. Teshukov, Mathematical Models of Propagation of Long Waves in an Inhomogeneous Fluid, Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000 (in Russian)

[13] Needham D. J., Merkin J. H., “On roll waves down an open inclined channel”, Proc. R. Soc. London A, 394 (1984), 259–278 | DOI

[14] Nessyahu H., Tadmor E., “Non-oscillatory central differencing for hyperbolic conservation laws”, J. Comput. Phys., 87:2 (1990), 408–463 | DOI | MR

[15] Shapiro A. H., “Steady flow in collapsible tubes”, J. Biomech. Eng., 99:3 (1977), 126–147 | DOI

[16] Stepanova I. V., Chesnokov A. A., Liapidevskii V. Yu., “Roll waves in two-layer Hele–Shaw flows”, J. Phys.: Conf. Ser., 722 (2016), 012036 | DOI | MR

[17] G. B. Whitham, Linear and Nonlinear Waves, J. Wiley Sons, New York, 1974 | MR