Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2018_300_a12, author = {A. G. Petrov and V. V. Vanovskiy}, title = {Nonlinear oscillations of a~spring pendulum at the 1\,:\,1\,:\,2 resonance: theory, experiment, and physical analogies}, journal = {Informatics and Automation}, pages = {168--175}, publisher = {mathdoc}, volume = {300}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a12/} }
TY - JOUR AU - A. G. Petrov AU - V. V. Vanovskiy TI - Nonlinear oscillations of a~spring pendulum at the 1\,:\,1\,:\,2 resonance: theory, experiment, and physical analogies JO - Informatics and Automation PY - 2018 SP - 168 EP - 175 VL - 300 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a12/ LA - ru ID - TRSPY_2018_300_a12 ER -
%0 Journal Article %A A. G. Petrov %A V. V. Vanovskiy %T Nonlinear oscillations of a~spring pendulum at the 1\,:\,1\,:\,2 resonance: theory, experiment, and physical analogies %J Informatics and Automation %D 2018 %P 168-175 %V 300 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a12/ %G ru %F TRSPY_2018_300_a12
A. G. Petrov; V. V. Vanovskiy. Nonlinear oscillations of a~spring pendulum at the 1\,:\,1\,:\,2 resonance: theory, experiment, and physical analogies. Informatics and Automation, Modern problems and methods in mechanics, Tome 300 (2018), pp. 168-175. http://geodesic.mathdoc.fr/item/TRSPY_2018_300_a12/
[1] N. N. Bogoliubov, Yu. A. Mitropolsky, Asymptotic Methods in the Theory of Non-linear Oscillations, 2nd ed., Hindustan Publ., Delhi, 1961 | MR | MR
[2] Fermi E., “Über den Ramaneffekt des Kohlendioxyds”, Z. Phys., 71 (1931), 250–259 | DOI
[3] R. I. Nigmatulin, Dynamics of Multiphase Media, v. 1, Hemisphere Publ., New York, 1990
[4] A. G. Petrov, “Rotation of the apparent vibration plane of a swinging spring at the 1 : 1 : 2 resonance”, Mech. Solids, 52 (2017), 243–253 | DOI
[5] V. V. Vanovskii, A. G. Petrov, “The resonant mechanism of subdivision of a gas bubble in a fluid”, Dokl. Phys., 57:6 (2012), 238–242 | DOI | MR
[6] V. V. Vanovskii, A. G. Petrov, “Spring analogy of non-linear oscillations of a bubble in a liquid at resonance”, J. Appl. Math. Mech., 81:4 (2017), 305–316 | DOI | MR
[7] A. Vitt, G. Gorelik, Oscillations of an elastic pendulum as an example of the oscillations of two parametrically coupled linear systems, Historical Note No. 3, , Met Éireann, Dublin, 1999 http://hdl.handle.net/2262/70474
[8] V. Ph. Zhuravlev, “A controlled Foucault pendulum as a model of a class of free gyros”, Mech. Solids, 32:6 (1997), 21–28