On a Diophantine inequality with reciprocals
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 144-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharpened lower bound is obtained for the number of solutions to an inequality of the form $\alpha \le \{(a\overline {n}+bn)/q\}\beta $, $1\le n\le N$, where $q$ is a sufficiently large prime number, $a$ and $b$ are integers with $(ab,q)=1$, $n\overline {n}\equiv 1 \pmod q$, and $0\le \alpha \beta \le 1$. The length $N$ of the range of the variable $n$ is of order $q^\varepsilon $, where $\varepsilon >0$ is an arbitrarily small fixed number.
Mots-clés : inverse residues
Keywords: fractional parts, Kloosterman sums.
@article{TRSPY_2017_299_a8,
     author = {M. A. Korolev},
     title = {On a {Diophantine} inequality with reciprocals},
     journal = {Informatics and Automation},
     pages = {144--154},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a8/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On a Diophantine inequality with reciprocals
JO  - Informatics and Automation
PY  - 2017
SP  - 144
EP  - 154
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a8/
LA  - ru
ID  - TRSPY_2017_299_a8
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On a Diophantine inequality with reciprocals
%J Informatics and Automation
%D 2017
%P 144-154
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a8/
%G ru
%F TRSPY_2017_299_a8
M. A. Korolev. On a Diophantine inequality with reciprocals. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 144-154. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a8/

[1] J. Bourgain and M. Z. Garaev, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. Math., 78 (2014), 656–707 | DOI | DOI | MR | Zbl

[2] Erdős P., Turán P., “On a problem in the theory of uniform distribution. I”, Proc. Akad. Wet. Amsterdam, 51 (1948), 1146–1154 | MR | Zbl

[3] Estermann T., “On Kloosterman's sum”, Mathematika, 8:1 (1961), 83–86 | DOI | MR | Zbl

[4] Hildebrand A., Tenenbaum G., “Integers without large prime factors”, J. théor. nombres Bord., 5:2 (1993), 411–484 | DOI | MR | Zbl

[5] Ivić A., “On squarefree numbers with restricted prime factors”, Stud. sci. math. Hung., 20 (1985), 189–192 | MR | Zbl

[6] A. A. Karatsuba, “The distribution of inverses in a residue ring modulo a given modulus”, Russ. Acad. Sci., Dokl. Math., 48:3 (1994), 452–454 | MR | MR | Zbl

[7] A. A. Karatsuba, “Fractional parts of functions of a special form”, Izv. Math., 59 (1995), 721–740 | DOI | MR | Zbl

[8] A. A. Karatsuba, “Analogues of Kloosterman sums”, Izv. Math., 59 (1995), 971–981 | DOI | MR | Zbl

[9] A. A. Karatsuba, “Sums of fractional parts of functions of a special form”, Dokl. Math., 54:1 (1996), 541 | MR | Zbl

[10] A. A. Karatsuba, “Analogs of incomplete Kloosterman sums and their applications”, Tatra Mt. Math. Publ., 11 (1997), 89–120 | MR | Zbl

[11] A. A. Karatsuba, “Kloosterman double sums”, Math. Notes, 66 (1999), 565–569 | DOI | DOI | MR | Zbl

[12] S. V. Konyagin and M. A. Korolev, “On a symmetric Diophantine equation with reciprocals”, Proc. Steklov Inst. Math., 294 (2016), 67–77 | DOI | MR | Zbl

[13] S. V. Konyagin, M. A. Korolev, “On irreducible solutions of an equation with reciprocals”, Sb. Math., 208:12 (2017) | DOI | MR

[14] M. A. Korolev, “Incomplete Kloosterman sums and their applications”, Izv. Math., 64 (2000), 1129–1152 | DOI | DOI | MR | Zbl

[15] M. A. Korolev, “Karatsuba's method for estimating Kloosterman sums”, Sb. Math., 207 (2016), 1142–1158 | DOI | DOI | MR | Zbl

[16] M. A. Korolev, “On short Kloosterman sums modulo a prime”, Math. Notes, 100 (2016), 820–827 | DOI | DOI | MR | Zbl

[17] I. M. Vinogradov, “An improvement of the estimation of sums with primes”, Izv. Akad. Nauk SSSR, Ser. Mat., 7:1 (1943), 17–34

[18] I. M. Vinogradov, Selected Works, Akad. Nauk SSSR, M., 1952 (in Russian) | MR

[19] I. M. Vinogradov, “An estimate for a certain sum extended over the primes of an arithmetic progression”, Izv. Akad. Nauk SSSR, Ser. Mat., 30:3 (1966), 481–496 | Zbl

[20] I. M. Vinogradov, “Special Variants of the Method of Trigonometric Sums”, Selected Works, Springer, Berlin, 1985, 299–383 | DOI | MR

[21] I. M. Vinogradov, “The Method of Trigonometric Sums in Number Theory”, Selected Works, Springer, Berlin, 1985, 181–295 | DOI | MR | MR

[22] Weil A., “On some exponential sums”, Proc. Natl. Acad. Sci. USA, 34 (1948), 204–207 | DOI | MR | Zbl