On complete rational arithmetic sums of polynomial values
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 56-61

Voir la notice de l'article provenant de la source Math-Net.Ru

New estimates are obtained for complete arithmetic sums of polynomial values (exponential sums, sums of Dirichlet characters, and sums of Bernoulli polynomials) in the case where the derivative of the polynomial in the argument of the sum has no multiple roots modulo primes dividing the period of these arithmetic sums.
@article{TRSPY_2017_299_a2,
     author = {V. N. Chubarikov},
     title = {On complete rational arithmetic sums of polynomial values},
     journal = {Informatics and Automation},
     pages = {56--61},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a2/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - On complete rational arithmetic sums of polynomial values
JO  - Informatics and Automation
PY  - 2017
SP  - 56
EP  - 61
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a2/
LA  - ru
ID  - TRSPY_2017_299_a2
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T On complete rational arithmetic sums of polynomial values
%J Informatics and Automation
%D 2017
%P 56-61
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a2/
%G ru
%F TRSPY_2017_299_a2
V. N. Chubarikov. On complete rational arithmetic sums of polynomial values. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 56-61. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a2/