Factorial hypersurfaces
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 219-233

Voir la notice de l'article provenant de la source Math-Net.Ru

The codimension of the complement of the set of factorial hypersurfaces of degree $d$ in $\mathbb P^N$ is estimated for $d\geq 4$ and $N\geq 7$.
Keywords: factoriality, singularity.
Mots-clés : hypersurface
@article{TRSPY_2017_299_a13,
     author = {A. V. Pukhlikov},
     title = {Factorial hypersurfaces},
     journal = {Informatics and Automation},
     pages = {219--233},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a13/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Factorial hypersurfaces
JO  - Informatics and Automation
PY  - 2017
SP  - 219
EP  - 233
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a13/
LA  - ru
ID  - TRSPY_2017_299_a13
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Factorial hypersurfaces
%J Informatics and Automation
%D 2017
%P 219-233
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a13/
%G ru
%F TRSPY_2017_299_a13
A. V. Pukhlikov. Factorial hypersurfaces. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 219-233. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a13/