On the binary additive divisor problem
Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 50-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the methods of Motohashi and Meurman yield the same upper bound on the error term in the binary additive divisor problem. To this end, we improve an estimate in the proof of Motohashi.
Keywords: additive divisor problem, hypergeometric function.
@article{TRSPY_2017_299_a1,
     author = {Olga G. Balkanova and Dmitry A. Frolenkov},
     title = {On the binary additive divisor problem},
     journal = {Informatics and Automation},
     pages = {50--55},
     publisher = {mathdoc},
     volume = {299},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a1/}
}
TY  - JOUR
AU  - Olga G. Balkanova
AU  - Dmitry A. Frolenkov
TI  - On the binary additive divisor problem
JO  - Informatics and Automation
PY  - 2017
SP  - 50
EP  - 55
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a1/
LA  - ru
ID  - TRSPY_2017_299_a1
ER  - 
%0 Journal Article
%A Olga G. Balkanova
%A Dmitry A. Frolenkov
%T On the binary additive divisor problem
%J Informatics and Automation
%D 2017
%P 50-55
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a1/
%G ru
%F TRSPY_2017_299_a1
Olga G. Balkanova; Dmitry A. Frolenkov. On the binary additive divisor problem. Informatics and Automation, Analytic number theory, Tome 299 (2017), pp. 50-55. http://geodesic.mathdoc.fr/item/TRSPY_2017_299_a1/