Analytic Complexity: Gauge Pseudogroup, Its Orbits, and Differential Invariants
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 58-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

All characteristics of analytic complexity of functions are invariant under a certain natural action (gauge pseudogroup $\mathcal G$). For the action of the pseudogroup $\mathcal G$, differential invariants are constructed and the equivalence problem is solved. Functions of two as well as of a greater number of variables are considered. Questions for further analysis are posed.
@article{TRSPY_2017_298_a3,
     author = {V. K. Beloshapka},
     title = {Analytic {Complexity:} {Gauge} {Pseudogroup,} {Its} {Orbits,} and {Differential} {Invariants}},
     journal = {Informatics and Automation},
     pages = {58--66},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a3/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Analytic Complexity: Gauge Pseudogroup, Its Orbits, and Differential Invariants
JO  - Informatics and Automation
PY  - 2017
SP  - 58
EP  - 66
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a3/
LA  - ru
ID  - TRSPY_2017_298_a3
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Analytic Complexity: Gauge Pseudogroup, Its Orbits, and Differential Invariants
%J Informatics and Automation
%D 2017
%P 58-66
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a3/
%G ru
%F TRSPY_2017_298_a3
V. K. Beloshapka. Analytic Complexity: Gauge Pseudogroup, Its Orbits, and Differential Invariants. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 58-66. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a3/

[1] Beloshapka V. K., “Analytic complexity of functions of two variables”, Russ. J. Math. Phys., 14:3 (2007), 243–249 | DOI | MR | Zbl

[2] Beloshapka V. K., “Analiticheskaya slozhnost funktsii mnogikh peremennykh”, Mat. zametki, 100:6 (2016), 781–789 | DOI | Zbl

[3] Blaschke W., Einführung in die Geometrie der Waben, Birkhäuser, Basel, 1955 | MR

[4] Krasikov V. A., Sadykov T. M., “Ob analiticheskoi slozhnosti diskriminantov”, Tr. MIAN, 279 (2012), 86–101 | Zbl

[5] Ostrowski A., “Über Dirichletsche Reihen und algebraische Differentialgleichungen”, Math. Z., 8 (1920), 241–298 | DOI | MR | Zbl

[6] Vitushkin A. G., “13-ya problema Gilberta i smezhnye voprosy”, UMN, 59:1 (2004), 11–24 | DOI | MR