Analytic Complexity: Gauge Pseudogroup, Its Orbits, and Differential Invariants
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 58-66
Cet article a éte moissonné depuis la source Math-Net.Ru
All characteristics of analytic complexity of functions are invariant under a certain natural action (gauge pseudogroup $\mathcal G$). For the action of the pseudogroup $\mathcal G$, differential invariants are constructed and the equivalence problem is solved. Functions of two as well as of a greater number of variables are considered. Questions for further analysis are posed.
@article{TRSPY_2017_298_a3,
author = {V. K. Beloshapka},
title = {Analytic {Complexity:} {Gauge} {Pseudogroup,} {Its} {Orbits,} and {Differential} {Invariants}},
journal = {Informatics and Automation},
pages = {58--66},
year = {2017},
volume = {298},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a3/}
}
V. K. Beloshapka. Analytic Complexity: Gauge Pseudogroup, Its Orbits, and Differential Invariants. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 58-66. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a3/
[1] Beloshapka V. K., “Analytic complexity of functions of two variables”, Russ. J. Math. Phys., 14:3 (2007), 243–249 | DOI | MR | Zbl
[2] Beloshapka V. K., “Analiticheskaya slozhnost funktsii mnogikh peremennykh”, Mat. zametki, 100:6 (2016), 781–789 | DOI | Zbl
[3] Blaschke W., Einführung in die Geometrie der Waben, Birkhäuser, Basel, 1955 | MR
[4] Krasikov V. A., Sadykov T. M., “Ob analiticheskoi slozhnosti diskriminantov”, Tr. MIAN, 279 (2012), 86–101 | Zbl
[5] Ostrowski A., “Über Dirichletsche Reihen und algebraische Differentialgleichungen”, Math. Z., 8 (1920), 241–298 | DOI | MR | Zbl
[6] Vitushkin A. G., “13-ya problema Gilberta i smezhnye voprosy”, UMN, 59:1 (2004), 11–24 | DOI | MR