Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2017_298_a19, author = {R. Shafikov and A. Sukhov}, title = {Discs in {Hulls} of {Real} {Immersions} into {Stein} {Manifolds}}, journal = {Informatics and Automation}, pages = {356--367}, publisher = {mathdoc}, volume = {298}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a19/} }
R. Shafikov; A. Sukhov. Discs in Hulls of Real Immersions into Stein Manifolds. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 356-367. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a19/
[1] Alexander H., “Gromov's method and Bennequin's problem”, Invent. math., 125:1 (1996), 135–148 | DOI | MR | Zbl
[2] Alexander H., “Disks with boundaries in totally real and Lagrangian manifolds”, Duke Math. J., 100:1 (1999), 131–138 | DOI | MR | Zbl
[3] Cieliebak K., Eliashberg Y., From Stein to Weinstein and back: Symplectic geometry of affine complex manifolds, AMS Colloq. Publ., 59, Amer. Math. Soc., Providence, RI, 2012 | MR | Zbl
[4] Drinovec Drnovšek B., Forstnerič F., “Characterizations of projective hulls by analytic discs”, Ill. J. Math., 56:1 (2012), 53–65 | MR | Zbl
[5] Duval J., Gayet D., “Riemann surfaces and totally real tori”, Comment. math. Helv., 89:2 (2014), 299–312 | DOI | MR | Zbl
[6] Duval J., Sibony N., “Hulls and positive closed currents”, Duke Math. J., 95:3 (1998), 621–633 | DOI | MR | Zbl
[7] Eliashberg Y., “Topological characterization of Stein manifolds of dimension $>2$”, Int. J. Math., 1:1 (1990), 29–46 | DOI | MR | Zbl
[8] Eliashberg Y., Gromov M., “Convex symplectic manifolds”, Several complex variables and complex geometry, Proc. Summer Res. Inst. (Santa Cruz, CA, 1989), v. 2, Proc. Symp. Pure Math., 52, Amer. Math. Soc., Providence, RI, 1991, 135–162 | DOI | MR
[9] Forstnerič F., Stein manifolds and holomorphic mappings: The homotopy principle in complex analysis, Springer, Heidelberg, 2011 | MR | Zbl
[10] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent. math., 82:2 (1985), 307–347 | DOI | MR | Zbl
[11] Gromov M., “Soft and hard symplectic geometry”, Proc. Int. Congr. Math. (Berkeley, CA, 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 81–98 | MR
[12] Ivashkovich S., Shevchishin V., “Reflection principle and $J$-complex curves with boundary on totally real immersions”, Commun. Contemp. Math., 4:1 (2002), 65–106 | DOI | MR | Zbl
[13] Ivashkovich S., Sukhov A., “Schwarz reflection principle, boundary regularity and compactness for $J$-complex curves”, Ann. Inst. Fourier., 60:4 (2010), 1489–1513 | DOI | MR | Zbl
[14] Labourie F., “Exemples de courbes pseudo-holomorphes en géométrie riemannienne”, Holomorphic curves in symplectic geometry, Prog. Math., 117, eds. M. Audin, J. Lafontaine, Birkhäuser, Basel, 1994, 251–269 | MR
[15] Lárusson F., Sigurdsson R., “Plurisubharmonic functions and analytic discs on manifolds”, J. reine angew. Math., 501 (1998), 1–39 | MR | Zbl
[16] McDuff D., Salamon D., $J$-holomorphic curves and symplectic topology, AMS Colloq. Publ., 52, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[17] Nijenhuis A., Woolf W., “Some integration problems in almost-complex and complex manifolds”, Ann. Math. Ser. 2, 77 (1963), 424–489 | DOI | MR | Zbl
[18] Poletsky E. A., “Holomorphic currents”, Indiana Univ. Math. J., 42:1 (1993), 85–144 | DOI | MR | Zbl
[19] Rosay J.-P., “Poletsky theory of disks on holomorphic manifolds”, Indiana Univ. Math. J., 52:1 (2003), 157–169 | DOI | MR | Zbl
[20] Shafikov R., Sukhov A., “Polynomially convex hulls of singular real manifolds”, Trans. Amer. Math. Soc., 368:4 (2016), 2469–2496 | DOI | MR | Zbl
[21] Sikorav J.-C., “Some properties of holomorphic curves in almost complex manifolds”, Holomorphic curves in symplectic geometry, Prog. Math., 117, eds. M. Audin, J. Lafontaine, Birkhäuser, Basel, 1994, 165–189 | MR
[22] Stout E. L., Polynomial convexity, Prog. Math., 261, Birkhäuser, Boston, 2007 | MR | Zbl
[23] Viterbo C., “Functors and computations in Floer homology with applications. I”, Geom. Funct. Anal., 9:5 (1999), 985–1033 | DOI | MR | Zbl