On Some Properties of Hermite--Pad\'e Approximants to an Exponential System
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 338-355.

Voir la notice de l'article provenant de la source Math-Net.Ru

Extremal properties and localization of zeros of general (including nondiagonal) type I Hermite–Padé polynomials are studied for the exponential system $\{e^{\lambda _jz}\}_{j=0}^k$ with arbitrary different complex numbers $\lambda _0,\lambda _1,\dots ,\lambda _k$. The theorems proved in the paper complement and generalize the results obtained earlier by other authors.
Keywords: exponential system, asymptotic equalities
Mots-clés : Hermite–Padé approximants, zeros of a polynomial.
@article{TRSPY_2017_298_a18,
     author = {A. P. Starovoitov and E. P. Kechko},
     title = {On {Some} {Properties} of {Hermite--Pad\'e} {Approximants} to an {Exponential} {System}},
     journal = {Informatics and Automation},
     pages = {338--355},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a18/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - E. P. Kechko
TI  - On Some Properties of Hermite--Pad\'e Approximants to an Exponential System
JO  - Informatics and Automation
PY  - 2017
SP  - 338
EP  - 355
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a18/
LA  - ru
ID  - TRSPY_2017_298_a18
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A E. P. Kechko
%T On Some Properties of Hermite--Pad\'e Approximants to an Exponential System
%J Informatics and Automation
%D 2017
%P 338-355
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a18/
%G ru
%F TRSPY_2017_298_a18
A. P. Starovoitov; E. P. Kechko. On Some Properties of Hermite--Pad\'e Approximants to an Exponential System. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 338-355. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a18/

[1] Aptekarev A. I., “Ob approksimatsiyakh Pade k naboru $\{{}_1F_1(1,c;\lambda _iz)\}_{i=1}^k$”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1981, no. 2, 58–62 | MR | Zbl

[2] Aptekarev A. I., “Asimptotika approksimatsii Ermita–Pade dlya pary funktsii s tochkami vetvleniya”, DAN, 422:4 (2008), 443–445 | Zbl

[3] Aptekarev A. I., Buslaev V. I., Martines-Finkelshtein A., Suetin S. P., “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6 (2011), 37–122 | DOI | MR | Zbl

[4] Aptekarev A. I., Kalyagin V. A., Saff E. B., “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl

[5] Aptekarev A. I., Lysov V. G., Tulyakov D. N., “Globalnyi rezhim raspredeleniya sobstvennykh znachenii sluchainykh matrits s angarmonicheskim potentsialom i vneshnim istochnikom”, TMF, 159:1 (2009), 34–57 | DOI | MR | Zbl

[6] Aptekarev A. I., Lysov V. G., Tulyakov D. N., “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Mat. sb., 202:2 (2011), 3–56 | DOI | Zbl

[7] Astafeva A. V., Starovoitov A. P., “Approksimatsii Ermita–Pade eksponentsialnykh funktsii”, Mat. sb., 207:6 (2016), 3–26 | DOI | MR

[8] Beiker Dzh. ml., Greivs-Morris P., Approksimatsii Pade, v. 1, Osnovy teorii ; т. 2, Обобщения и приложения, Мир, М., 1986 | MR

[9] Borwein P. B., “Quadratic Hermite–Padé approximation to the exponential function”, Constr. Approx., 2 (1986), 291–302 | DOI | MR | Zbl

[10] Braess D., “On the conjecture of Meinardus on rational approximation of $e^x$. II”, J. Approx. Theory, 40:4 (1984), 375–379 | DOI | MR | Zbl

[11] Buslaev V. I., Suetin S. P., “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Tr. MIAN, 290, 2015, 272–279 | Zbl

[12] Chudnovsky G. V., “Hermite–Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi $”, The Riemann problem, complete integrability and arithmetic applications, Proc. Semin. IHES and Columbia Univ. (1979–1980), Lect. Notes Math., 925, Springer, Berlin, 1982, 299–322 | DOI | MR

[13] Driver K., “Nondiagonal quadratic Hermite–Padé approximation to the exponential function”, J. Comput. Appl. Math., 65 (1995), 125–134 | DOI | MR | Zbl

[14] Gonchar A. A., “Ratsionalnye approksimatsii analiticheskikh funktsii”, Sovr. probl. matematiki, 1 (2003), 83–106 | DOI | Zbl

[15] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Tr. MIAN, 157, 1981, 31–48 | Zbl

[16] Gonchar A. A., Rakhmanov E. A., “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Mat. sb., 134:3 (1987), 306–352 | Zbl

[17] Hermite C., “Sur la fonction exponentielle”, C. r. Acad. sci. Paris, 77 (1873), 18–24

[18] Hermite C., “Sur la généralisation des fractions continues algébriques”, Ann. Mat. Pura Appl. Ser. 2, 21 (1893), 289–308 | DOI

[19] Kalyagin V. A., “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Mat. sb., 185:6 (1994), 79–100 | Zbl

[20] Kuijlaars A., Stahl H., Van Assche W., Wielonsky F., “Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert”, C. r. Math. Acad. sci. Paris, 336:11 (2003), 893–896 | DOI | MR | Zbl

[21] Kuijlaars A. B.J., Stahl H., Van Assche W., Wielonsky F., “Type II Hermite–Padé approximation to the exponential function”, J. Comput. Appl. Math., 207:2 (2007), 227–244 | DOI | MR | Zbl

[22] Kuijlaars A. B. J., Van Assche W., Wielonsky F., “Quadratic Hermite–Padé approximation to the exponential function: A Riemann–Hilbert approach”, Constr. Approx., 21:3 (2005), 351–412 | DOI | MR | Zbl

[23] Labych Yu. A., Starovoitov A. P., “Trigonometricheskie approksimatsii Pade funktsii s regulyarno ubyvayuschimi koeffitsientami Fure”, Mat. sb., 200:7 (2009), 107–130 | DOI | MR | Zbl

[24] Lapik M. A., “O semeistvakh vektornykh mer, ravnovesnykh vo vneshnem pole”, Mat. sb., 206:2 (2015), 41–56 | DOI | MR | Zbl

[25] Lopes Lagomasino G., Medina Peralta S., Fidalgo Prieto U., “Approksimatsii Ermita–Pade dlya nekotorykh sistem meromorfnykh funktsii”, Mat. sb., 206:2 (2015), 57–76 | DOI | MR

[26] Mahler K., “Zur Approximation der Exponentialfunktion und des Logarithmus. I, II”, J. reine angew. Math., 166 (1931), 118–136 ; (1932), 137–150 | MR

[27] Mahler K., “Perfect systems”, Compos. math., 19:2 (1968), 95–166 | MR | Zbl

[28] Marden M., Geometry of polynomials, Amer. Math. Soc., Providence, RI, 1966 | MR | Zbl

[29] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR

[30] Pólya G., Szegő G., Problems and theorems in analysis, v. 1, Series, integral calculus, theory of functions, Springer, Berlin, 1978 | MR

[31] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady: Elementarnye funktsii, Nauka, M., 1981 | MR

[32] Rusak V. N., Starovoitov A. P., “Approksimatsii Pade dlya tselykh funktsii s regulyarno ubyvayuschimi koeffitsientami Teilora”, Mat. sb., 193:9 (2002), 63–92 | DOI | MR | Zbl

[33] Saff E. B., Varga R. S., “On the zeros and poles of Padé approximants to $e^z$. II”, Padé and rational approximation. Theory and applications, Proc. Int. Symp. Univ. S. Fla. (1976), eds. E. B. Saff, R. S. Varga, Acad. Press, New York, 1977, 195–213 | DOI | MR

[34] Stahl H., “Asymptotics for quadratic Hermite–Padé polynomials associated with the exponential function”, Electron. Trans. Numer. Anal., 14 (2002), 195–222 | MR | Zbl

[35] Stahl H., “Asymptotic distributions of zeros of quadratic Hermite–Padé polynomials associated with the exponential function”, Constr. Approx., 23:2 (2006), 121–164 | DOI | MR | Zbl

[36] Starovoitov A. P., “O svoistvakh approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, Dokl. NAN Belarusi, 57:1 (2013), 5–10 | MR

[37] Starovoitov A. P., “Approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, Probl. fiziki, matematiki i tekhniki, 2013, no. 1, 81–87 | Zbl

[38] Starovoitov A. P., “Ermitovskaya approksimatsiya dvukh eksponent”, Izv. Sarat. un-ta. Matematika. Mekhanika. Informatika, 13:1(2) (2013), 87–91

[39] Starovoitov A. P., “Ob asimptotike approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, Izv. vuzov. Matematika, 2014, no. 9, 59–68 | Zbl

[40] Starovoitov A. P., Kechko E. P., “O lokalizatsii nulei approksimatsii Ermita–Pade eksponentsialnykh funktsii”, Probl. fiziki, matematiki i tekhniki, 2015, no. 3, 84–89 | Zbl

[41] Starovoitov A. P., Kechko E. P., “Ob ekstremalnom svoistve approksimatsii Ermita–Pade eksponentsialnykh funktsii”, Dokl. NAN Belarusi, 60:1 (2016), 5–11 | Zbl

[42] Starovoitov A. P., Kechko E. P., “Verkhnie otsenki modulei nulei approksimatsii Ermita–Pade dlya nabora eksponentsialnykh funktsii”, Mat. zametki, 99:3 (2016), 409–420 | DOI | MR | Zbl

[43] Starovoitov A. P., Starovoitova N. A., “Approksimatsii Pade funktsii Mittag–Lefflera”, Mat. sb., 198:7 (2007), 109–122 | DOI | MR | Zbl

[44] Starovoitow A. P., Starovoitowa N. A., Ryabchenko N. V., “Padé approximants of special functions”, J. Math. Sci., 187:1 (2012), 77–85 | DOI | MR | Zbl

[45] Suetin S. P., “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1 (2002), 45–142 | DOI | MR | Zbl

[46] Suetin S. P., “O suschestvovanii nelineinykh approksimatsii Pade–Chebyshëva dlya analiticheskikh funktsii”, Mat. zametki, 86:2 (2009), 290–303 | DOI | Zbl

[47] Suetin S. P., “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (2015), 121–174 | DOI | MR | Zbl

[48] Suetin S. P., “O raspredelenii nulei polinomov Ermita–Pade dlya nabora chetyrekh funktsii”, UMN, 72:2 (2017), 191–192 | DOI | MR | Zbl

[49] Szegö G., “Über eine Eigenschaft der Exponentialreihe”, Sitzungsber. Berl. Math. Ges., 23 (1924), 50–64 | Zbl

[50] Trefethen L. N., “The asymptotic accuracy of rational best approximations to $e^z$ on a disk”, J. Approx. Theory, 40:4 (1984), 380–383 | DOI | MR | Zbl

[51] Van Assche W., “Multiple orthogonal polynomials, irrationality and transcendence”, Continued fractions: From analytic number theory to constructive approximation, Proc. Conf. (Univ. Missouri, 1998), Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 325–342 | DOI | MR | Zbl

[52] Walsh J. L., “On the location of the roots of certain types of polynomials”, Trans. Amer. Math. Soc., 24:3 (1922), 163–180 | DOI | MR

[53] Wielonsky F., “Asymptotics of diagonal Hermite–Padé approximants to $e^z$”, J. Approx. Theory, 90:2 (1997), 283–298 | DOI | MR | Zbl

[54] Wielonsky F., “Riemann–Hilbert analysis and uniform convergence of rational interpolants to the exponential function”, J. Approx. Theory, 131:1 (2004), 100–148 | DOI | MR | Zbl