On the Analytic Complexity of Hypergeometric Functions
Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 267-275

Voir la notice de l'article provenant de la source Math-Net.Ru

Hypergeometric functions of several variables resemble functions of finite analytic complexity in the sense that the elements of both classes satisfy certain canonical overdetermined systems of partial differential equations. Otherwise these two sets of functions are very different. We investigate the relation between the two classes of functions and compute the analytic complexity of certain bivariate hypergeometric functions.
@article{TRSPY_2017_298_a15,
     author = {T. M. Sadykov},
     title = {On the {Analytic} {Complexity} of {Hypergeometric} {Functions}},
     journal = {Informatics and Automation},
     pages = {267--275},
     publisher = {mathdoc},
     volume = {298},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a15/}
}
TY  - JOUR
AU  - T. M. Sadykov
TI  - On the Analytic Complexity of Hypergeometric Functions
JO  - Informatics and Automation
PY  - 2017
SP  - 267
EP  - 275
VL  - 298
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a15/
LA  - ru
ID  - TRSPY_2017_298_a15
ER  - 
%0 Journal Article
%A T. M. Sadykov
%T On the Analytic Complexity of Hypergeometric Functions
%J Informatics and Automation
%D 2017
%P 267-275
%V 298
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a15/
%G ru
%F TRSPY_2017_298_a15
T. M. Sadykov. On the Analytic Complexity of Hypergeometric Functions. Informatics and Automation, Complex analysis and its applications, Tome 298 (2017), pp. 267-275. http://geodesic.mathdoc.fr/item/TRSPY_2017_298_a15/